Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia.
Department of Industrial and Systems Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Comput Intell Neurosci. 2022 May 14;2022:1698137. doi: 10.1155/2022/1698137. eCollection 2022.
Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration, medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective solutions and decisions. The latest developments of fuzzy systems with artificial intelligence techniques enable to design the effective microarray gene expression classification models. In this aspect, this study introduces a novel feature subset selection with optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. The major aim of the FSS-OANFIS model is to detect and classify the gene expression data. To accomplish this, the FSS-OANFIS model designs an improved grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFIS model is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization algorithm (COA). The application of IGWO-FS and COA techniques helps in accomplishing enhanced microarray gene expression classification outcomes. The experimental validation of the FSS-OANFIS model has been performed using Leukemia, Prostate, DLBCL Stanford, and Colon Cancer datasets. The proposed FSS-OANFIS model has resulted in a maximum classification accuracy of 89.47%.
最近,生物信息学和计算生物学支持的应用,如基因表达分析、细胞修复、医学图像处理、蛋白质结构检查和医学数据分类,利用模糊系统提供有效的解决方案和决策。最新的模糊系统与人工智能技术的发展,使设计有效的微阵列基因表达分类模型成为可能。在这方面,本研究提出了一种新颖的特征子集选择与最优自适应神经模糊推理系统(FSS-OANFIS)用于基因表达分类。FSS-OANFIS 模型的主要目的是检测和分类基因表达数据。为了实现这一目标,FSS-OANFIS 模型设计了一种基于改进灰狼优化器的特征选择(IGWO-FS)模型来获得最佳的特征子集。此外,OANFIS 模型用于基因分类,并且使用郊狼优化算法(COA)调整 ANFIS 模型的参数调整。IGWO-FS 和 COA 技术的应用有助于实现增强的微阵列基因表达分类结果。使用白血病、前列腺癌、DLBCL 斯坦福和结肠癌数据集对 FSS-OANFIS 模型进行了实验验证。所提出的 FSS-OANFIS 模型实现了最高 89.47%的分类准确率。