Suppr超能文献

用于 k-t 欠采样多带首过心肌灌注 MRI 的切片低秩加稀疏 (slice-L + S) 重建方法。

A Slice-Low-Rank Plus Sparse (slice-L + S) Reconstruction Method for k-t Undersampled Multiband First-Pass Myocardial Perfusion MRI.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.

Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.

出版信息

Magn Reson Med. 2022 Sep;88(3):1140-1155. doi: 10.1002/mrm.29281. Epub 2022 May 24.

Abstract

PURPOSE

The synergistic use of k-t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first-pass perfusion MRI. The low-rank plus sparse (L + S) model has shown excellent performance for accelerating single-band (SB) perfusion MRI.

METHODS

A MB data consistency method employing ESPIRiT maps and through-plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice-L + S method. Slice-L + S was compared to SB L + S and the sequential operations of split slice-GRAPPA and SB L + S (seq-SG-L + S) using synthetic data formed from multislice SB images. Prospectively k-t undersampled MB data were also acquired and reconstructed using seq-SG-L + S and slice-L + S.

RESULTS

Using synthetic data with total acceleration rates of 6-12, slice-L + S outperformed SB L + S and seq-SG-L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq-SG-L + S, and slice-L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice-L + S provided better image quality than seq-SG-L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts.

CONCLUSION

Slice-L + S outperformed SB-L + S and seq-SG-L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality.

摘要

目的

k-t 欠采样与多带宽(MB)成像的协同使用,有望为首过灌注 MRI 提供扩展的切片覆盖范围和高空间分辨率。低秩加稀疏(L+S)模型已被证明在加速单带宽(SB)灌注 MRI 方面具有出色的性能。

方法

开发了一种利用 ESPIRiT 图谱和平面内线圈信息的 MB 数据一致性方法。该数据一致性方法与时间 L+S 约束相结合,形成切片 L+S 方法。使用来自多切片 SB 图像的合成数据,将切片 L+S 与 SB L+S 和顺序切片-GRAPPA 和 SB L+S(seq-SG-L+S)的操作进行了比较。还使用顺序的 sg-L+S 和切片-L+S 对前瞻性 k-t 欠采样 MB 数据进行了采集和重建。

结果

使用总加速率为 6-12 的合成数据,与 SB L+S 和 seq-SG-L+S 相比,切片 L+S 在归一化均方根误差和结构相似性指数方面均具有优势(P<0.05)。对于 MB 因子=3 和 3 倍欠采样率的具体情况,或者对于 SB 成像的 9 倍欠采样率(N=7 例),归一化均方根误差值分别为 0.037±0.007、0.042±0.005 和 0.031±0.004;结构相似性指数值分别为 0.88±0.03、0.85±0.03 和 0.89±0.02,用于 SB L+S、seq-SG-L+S 和切片 L+S(P<0.05)。对于前瞻性欠采样 MB 数据,在由盲法专家评分时,与 seq-SG-L+S 相比,切片 L+S 为 6 倍(N=7)和 9 倍(N=7)加速提供了更好的图像质量。

结论

与 SB-L+S 和 seq-SG-L+S 相比,切片 L+S 提供了更好的性能,可实现 9 个左心室切片的覆盖范围,空间分辨率为 1.5mm×1.5mm,图像质量良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a89/9325064/9280a5ec7020/MRM-88-1140-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验