Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.
Magn Reson Med. 2022 Sep;88(3):1140-1155. doi: 10.1002/mrm.29281. Epub 2022 May 24.
The synergistic use of k-t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first-pass perfusion MRI. The low-rank plus sparse (L + S) model has shown excellent performance for accelerating single-band (SB) perfusion MRI.
A MB data consistency method employing ESPIRiT maps and through-plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice-L + S method. Slice-L + S was compared to SB L + S and the sequential operations of split slice-GRAPPA and SB L + S (seq-SG-L + S) using synthetic data formed from multislice SB images. Prospectively k-t undersampled MB data were also acquired and reconstructed using seq-SG-L + S and slice-L + S.
Using synthetic data with total acceleration rates of 6-12, slice-L + S outperformed SB L + S and seq-SG-L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq-SG-L + S, and slice-L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice-L + S provided better image quality than seq-SG-L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts.
Slice-L + S outperformed SB-L + S and seq-SG-L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality.
k-t 欠采样与多带宽(MB)成像的协同使用,有望为首过灌注 MRI 提供扩展的切片覆盖范围和高空间分辨率。低秩加稀疏(L+S)模型已被证明在加速单带宽(SB)灌注 MRI 方面具有出色的性能。
开发了一种利用 ESPIRiT 图谱和平面内线圈信息的 MB 数据一致性方法。该数据一致性方法与时间 L+S 约束相结合,形成切片 L+S 方法。使用来自多切片 SB 图像的合成数据,将切片 L+S 与 SB L+S 和顺序切片-GRAPPA 和 SB L+S(seq-SG-L+S)的操作进行了比较。还使用顺序的 sg-L+S 和切片-L+S 对前瞻性 k-t 欠采样 MB 数据进行了采集和重建。
使用总加速率为 6-12 的合成数据,与 SB L+S 和 seq-SG-L+S 相比,切片 L+S 在归一化均方根误差和结构相似性指数方面均具有优势(P<0.05)。对于 MB 因子=3 和 3 倍欠采样率的具体情况,或者对于 SB 成像的 9 倍欠采样率(N=7 例),归一化均方根误差值分别为 0.037±0.007、0.042±0.005 和 0.031±0.004;结构相似性指数值分别为 0.88±0.03、0.85±0.03 和 0.89±0.02,用于 SB L+S、seq-SG-L+S 和切片 L+S(P<0.05)。对于前瞻性欠采样 MB 数据,在由盲法专家评分时,与 seq-SG-L+S 相比,切片 L+S 为 6 倍(N=7)和 9 倍(N=7)加速提供了更好的图像质量。
与 SB-L+S 和 seq-SG-L+S 相比,切片 L+S 提供了更好的性能,可实现 9 个左心室切片的覆盖范围,空间分辨率为 1.5mm×1.5mm,图像质量良好。