Suppr超能文献

基于压缩 SVD 的 L+S 模型,使用并行架构对欠采样的动态 MRI 数据进行重建。

Compressed SVD-based L + S model to reconstruct undersampled dynamic MRI data using parallel architecture.

机构信息

Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Department of Electrical Engineering, University of Poonch Rawalakot, Rawalakot, AJ&K, Pakistan.

出版信息

MAGMA. 2024 Oct;37(5):825-844. doi: 10.1007/s10334-023-01128-5. Epub 2023 Nov 18.

Abstract

BACKGROUND

Magnetic Resonance Imaging (MRI) is a highly demanded medical imaging system due to high resolution, large volumetric coverage, and ability to capture the dynamic and functional information of body organs e.g. cardiac MRI is employed to assess cardiac structure and evaluate blood flow dynamics through the cardiac valves. Long scan time is the main drawback of MRI, which makes it difficult for the patients to remain still during the scanning process.

OBJECTIVE

By collecting fewer measurements, MRI scan time can be shortened, but this undersampling causes aliasing artifacts in the reconstructed images. Advanced image reconstruction algorithms have been used in literature to overcome these undersampling artifacts. These algorithms are computationally expensive and require a long time for reconstruction which makes them infeasible for real-time clinical applications e.g. cardiac MRI. However, exploiting the inherent parallelism in these algorithms can help to reduce their computation time.

METHODS

Low-rank plus sparse (L+S) matrix decomposition model is a technique used in literature to reconstruct the highly undersampled dynamic MRI (dMRI) data at the expense of long reconstruction time. In this paper, Compressed Singular Value Decomposition (cSVD) model is used in L+S decomposition model (instead of conventional SVD) to reduce the reconstruction time. The results provide improved quality of the reconstructed images. Furthermore, it has been observed that cSVD and other parts of the L+S model possess highly parallel operations; therefore, a customized GPU based parallel architecture of the modified L+S model has been presented to further reduce the reconstruction time.

RESULTS

Four cardiac MRI datasets (three different cardiac perfusion acquired from different patients and one cardiac cine data), each with different acceleration factors of 2, 6 and 8 are used for experiments in this paper. Experimental results demonstrate that using the proposed parallel architecture for the reconstruction of cardiac perfusion data provides a speed-up factor up to 19.15× (with memory latency) and 70.55× (without memory latency) in comparison to the conventional CPU reconstruction with no compromise on image quality.

CONCLUSION

The proposed method is well-suited for real-time clinical applications, offering a substantial reduction in reconstruction time.

摘要

背景

磁共振成像(MRI)是一种高度要求的医学成像系统,因为它具有高分辨率、大容量覆盖范围以及能够捕获身体器官的动态和功能信息的能力,例如心脏 MRI 用于评估心脏结构并评估通过心脏瓣膜的血流动力学。扫描时间长是 MRI 的主要缺点,这使得患者在扫描过程中难以保持静止。

目的

通过减少测量次数,可以缩短 MRI 扫描时间,但这种欠采样会在重建图像中产生混叠伪影。文献中已经使用了先进的图像重建算法来克服这些欠采样伪影。这些算法计算量很大,重建时间长,因此对于实时临床应用(例如心脏 MRI)不可行。然而,利用这些算法中的固有并行性可以帮助减少它们的计算时间。

方法

低秩加稀疏(L+S)矩阵分解模型是文献中用于重建高度欠采样动态 MRI(dMRI)数据的技术,代价是重建时间长。在本文中,压缩奇异值分解(cSVD)模型用于 L+S 分解模型(代替传统的 SVD)以减少重建时间。结果提供了重建图像质量的提高。此外,已经观察到 cSVD 和 L+S 模型的其他部分具有高度并行的操作;因此,提出了一种基于定制 GPU 的修改后的 L+S 模型的并行架构,以进一步减少重建时间。

结果

本文使用了四个心脏 MRI 数据集(三个来自不同患者的不同心脏灌注,一个心脏电影数据),每个数据集的加速因子分别为 2、6 和 8。实验结果表明,使用所提出的并行架构进行心脏灌注数据的重建,与传统的 CPU 重建相比,在不影响图像质量的情况下,提供了高达 19.15 倍(带内存延迟)和 70.55 倍(不带内存延迟)的加速因子。

结论

该方法非常适合实时临床应用,大大减少了重建时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验