Suppr超能文献

基于甲状腺影像报告和数据系统(TIRADS)的甲状腺结节超声图像人工智能系统:一项系统评价方案

TIRADS-based artificial intelligence systems for ultrasound images of thyroid nodules: protocol for a systematic review.

作者信息

Sharifi Yasaman, Amiri Tehranizadeh Amin, Danay Ashgzari Morteza, Naseri Zeinab

机构信息

Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Department of Computer, Faculty of Engineering, Islamic Azad University of Mashhad, Mashhad, Iran.

出版信息

J Ultrasound. 2025 Mar;28(1):151-158. doi: 10.1007/s40477-024-00972-y. Epub 2024 Nov 20.

Abstract

PURPOSE

The thyroid imaging reporting and data system (TIRADS) was developed as a standard global term to describe thyroid nodule risk features, aiming to address issues such as variability and low reproducibility in nodule feature detection and interpretation by different physicians. The objective of this study is to comprehensively study articles that utilize AI techniques to design and develop decision support systems for classifying thyroid nodule risk on the basis of various TIRADS guidelines from ultrasound images.

METHODS

This protocol includes five steps: identification of key research questions of the review, descriptions of the systematic literature search strategies, criteria for study inclusion and exclusion, study quality measures, and the data extraction process. We designed a complete search string using PubMed, Scopus, and Web of Sciences to retrieve all relevant English language studies up to January 2024. A PRISMA diagram was constructed, inclusion and exclusion criteria were defined, and after a quality assessment of the included papers, relevant data were extracted. The protocol of this systematic review was registered in the PROSPERO database (CRD42024551311).

RESULTS

We anticipate that our findings will assist researchers in creating higher-quality systems with increased efficiency, reducing unnecessary biopsies, improving the reproducibility and reliability of thyroid nodule diagnostics, and providing good educational opportunities for less experienced physicians.

CONCLUSION

In this study, a protocol was used for performing a systematic review to evaluate the diagnostic performance and other various aspects used in the design and development of artificial intelligence CAD systems based on various thyroid imaging reporting and data systems (TI-RADSs).

摘要

目的

甲状腺影像报告和数据系统(TIRADS)作为一种全球通用标准术语被开发出来,用于描述甲状腺结节的风险特征,旨在解决不同医生在结节特征检测和解读方面存在的变异性和低重复性等问题。本研究的目的是全面研究利用人工智能技术,基于超声图像的各种TIRADS指南设计和开发用于甲状腺结节风险分类的决策支持系统的文章。

方法

本方案包括五个步骤:确定综述的关键研究问题、描述系统文献检索策略、研究纳入和排除标准、研究质量评估方法以及数据提取过程。我们使用PubMed、Scopus和Web of Sciences设计了一个完整的检索式,以检索截至2024年1月的所有相关英文研究。构建了PRISMA流程图,定义了纳入和排除标准,并在对纳入论文进行质量评估后,提取了相关数据。本系统综述方案已在PROSPERO数据库(CRD42024551311)中注册。

结果

我们预计我们的研究结果将有助于研究人员创建更高质量、效率更高的系统,减少不必要的活检,提高甲状腺结节诊断的可重复性和可靠性,并为经验不足的医生提供良好的教育机会。

结论

在本研究中,使用了一种方案进行系统综述,以评估基于各种甲状腺影像报告和数据系统(TI-RADSs)的人工智能计算机辅助诊断(CAD)系统在设计和开发中使用的诊断性能及其他各个方面。

相似文献

1
TIRADS-based artificial intelligence systems for ultrasound images of thyroid nodules: protocol for a systematic review.
J Ultrasound. 2025 Mar;28(1):151-158. doi: 10.1007/s40477-024-00972-y. Epub 2024 Nov 20.
2
New Thyroid Imaging Reporting and Data System (TIRADS) Based on Ultrasonography Features for Follicular Thyroid Neoplasms: A Multicenter Study.
Ultrasound Med Biol. 2025 Aug;51(8):1343-1351. doi: 10.1016/j.ultrasmedbio.2025.05.004. Epub 2025 May 31.
4
Human-AI collaboration for ultrasound diagnosis of thyroid nodules: a clinical trial.
Eur Arch Otorhinolaryngol. 2025 Feb 8. doi: 10.1007/s00405-025-09236-9.
5
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
8
Inter-Rater Reliability of Thyroid Ultrasound Risk Criteria: A Systematic Review and Meta-Analysis.
Laryngoscope. 2023 Mar;133(3):485-493. doi: 10.1002/lary.30347. Epub 2022 Aug 30.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

1
Artificial intelligence-enhanced ultrasound imaging for thyroid nodule detection and malignancy classification: a study on YOLOv11.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7964-7976. doi: 10.21037/qims-2025-257. Epub 2025 Aug 14.

本文引用的文献

1
Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis.
Comput Methods Programs Biomed. 2024 Feb;244:107999. doi: 10.1016/j.cmpb.2023.107999. Epub 2024 Jan 2.
3
A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer.
Front Oncol. 2022 Dec 19;12:938292. doi: 10.3389/fonc.2022.938292. eCollection 2022.
4
Automatic classification of thyroid nodules in ultrasound images using a multi-task attention network guided by clinical knowledge.
Comput Biol Med. 2022 Nov;150:106172. doi: 10.1016/j.compbiomed.2022.106172. Epub 2022 Oct 3.
5
Multitask network for thyroid nodule diagnosis based on TI-RADS.
Med Phys. 2022 Aug;49(8):5064-5080. doi: 10.1002/mp.15724. Epub 2022 Jun 14.
6
An Artificial Intelligence Model Based on ACR TI-RADS Characteristics for US Diagnosis of Thyroid Nodules.
Radiology. 2022 Jun;303(3):613-619. doi: 10.1148/radiol.211455. Epub 2022 Mar 22.
7
Diagnosis of thyroid cancer using a TI-RADS-based computer-aided diagnosis system: a multicenter retrospective study.
Clin Imaging. 2021 Dec;80:43-49. doi: 10.1016/j.clinimag.2020.12.012. Epub 2021 Mar 1.
8
Global trends in thyroid cancer incidence and the impact of overdiagnosis.
Lancet Diabetes Endocrinol. 2020 Jun;8(6):468-470. doi: 10.1016/S2213-8587(20)30115-7.
10
Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists.
Radiology. 2019 Sep;292(3):695-701. doi: 10.1148/radiol.2019181343. Epub 2019 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验