Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
Institute for Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
mBio. 2022 Jun 28;13(3):e0125522. doi: 10.1128/mbio.01255-22. Epub 2022 May 24.
Methane-oxidizing bacteria (methanotrophs) play an ecological role in methane and nitrogen fluxes because they are capable of nitrogen fixation and methane oxidation, as indicated by genomic and cultivation-dependent studies. However, the chemical relationships between methanotrophy and diazotrophy and aerobic and anaerobic reactions, respectively, in methanotrophs remain unclear. No study has demonstrated the cooccurrence of both bioactivities in a single methanotroph bacterium in its natural environment. Here, we demonstrate that both bioactivities in type II methanotrophs occur at the single-cell level in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). We first verified that difluoromethane, an inhibitor of methane monooxygenase, affected methane oxidation in rice roots. The results indicated that methane assimilation in the roots mostly occurred due to oxygen-dependent processes. Moreover, the results indicated that methane oxidation-dependent and methane oxidation-independent nitrogen fixation concurrently occurred in bulk root tissues. Subsequently, we performed fluorescence hybridization and NanoSIMS analyses, which revealed that single cells of type II methanotrophs (involving six amplicon sequence variants) in paddy rice roots simultaneously and logarithmically fixed stable isotope gases N and CH during incubation periods of 0, 23, and 42 h, providing functional evidence of nitrogen fixation in methanotrophic cells. Furthermore, N enrichment in type II methanotrophs at 42 h varied among cells with an increase in C accumulation, suggesting that either the release of fixed nitrogen into root systems or methanotroph metabolic specialization is dependent on different microenvironmental niches in the root. Atmospheric methane concentrations have been continually increasing, causing methane to become a considerable environmental concern. Methanotrophy may be the key to regulating methane fluxes. Although research suggests that type II methanotrophs are involved in methane oxidation aerobically and nitrogen fixation anaerobically, direct evidence of simultaneous aerobic and anaerobic bioreactions of methanotrophs is still lacking. In this study, a single-cell isotope analysis was performed to demonstrate these parallel functions of type II methanotrophs in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). The results of this study indicated that methanotrophs might provide fixed nitrogen to root systems or depend on cells present in the spatially localized niche of the root tissue. Furthermore, our results suggested that single type II methanotrophic cells performed simultaneous methane oxidation and nitrogen fixation . Under natural conditions, however, nitrogen accumulation varied at the single-cell level.
甲烷氧化细菌(甲烷营养菌)在甲烷和氮通量中发挥生态作用,因为它们能够进行固氮和甲烷氧化,这一点已被基因组和培养依赖性研究表明。然而,甲烷营养菌中甲烷氧化作用与固氮作用以及有氧和无氧反应之间的化学关系仍不清楚。没有研究表明在自然环境中的单个甲烷营养菌中同时存在这两种生物活性。在这里,我们证明了水稻(Oryza sativa L. cv. Nipponbare)根组织中的 II 型甲烷营养菌在单细胞水平上同时具有这两种生物活性。我们首先验证了二氟甲烷(甲烷单加氧酶的抑制剂)对水稻根中甲烷氧化的影响。结果表明,根中的甲烷同化主要是通过依赖氧的过程发生的。此外,结果表明,在大块根组织中同时发生了甲烷氧化依赖和非依赖的氮固定。随后,我们进行了荧光杂交和 NanoSIMS 分析,结果表明,在水稻根中,II 型甲烷营养菌(涉及六个扩增子序列变异)的单个细胞在 0、23 和 42 h 的孵育期内同时对数固定稳定同位素气体 N 和 CH,为甲烷营养细胞固氮提供了功能证据。此外,在 42 h 时,II 型甲烷营养菌中的 N 富集因 C 积累而在细胞间变化,表明固定氮被释放到根系中或甲烷营养菌代谢特化依赖于根系中不同的微环境小生境。大气中甲烷浓度持续增加,导致甲烷成为一个相当大的环境问题。甲烷氧化作用可能是调节甲烷通量的关键。尽管研究表明,II 型甲烷营养菌参与了甲烷的有氧氧化和氮的无氧固定,但直接证明甲烷营养菌的有氧和无氧生物反应同时发生的证据仍然缺乏。在这项研究中,对水稻(Oryza sativa L. cv. Nipponbare)根组织中的单个细胞进行了同位素分析,以证明这些 II 型甲烷营养菌的这些平行功能。研究结果表明,甲烷营养菌可能向根系提供固定氮,或者依赖于根组织空间定位小生境中的细胞。此外,我们的结果表明,单个 II 型甲烷营养细胞同时进行甲烷氧化和氮固定。然而,在自然条件下,氮的积累在单细胞水平上存在差异。