CSIR-Institute of Microbial Technology, Chandigarh, India.
J Bacteriol. 2022 Jun 21;204(6):e0011022. doi: 10.1128/jb.00110-22. Epub 2022 May 24.
Mycobacterium tuberculosis encounters numerous stress conditions within the host, but how it is able to mount a coupled stress response remains unknown. Growing evidence suggests that under acidic pH, M. tuberculosis modulates redox homeostasis. In an attempt to dissect the mechanistic details of responses to multiple stress conditions, here we studied the significance of connectivity of extracytoplasmic sigma factors with PhoP. We show that PhoP impacts the mycothiol redox state, and the H37Rv Δ deletion mutant strain displays a significantly higher susceptibility to redox stress than the wild-type bacilli. To probe how the two regulators PhoP and redox-active sigma factor SigH contribute to redox homeostasis, we show that SigH controls expression of redox-active thioredoxin genes, a major mycobacterial antioxidant system, and under redox stress, SigH, but not PhoP, is recruited at the target promoters. Consistent with these results, interaction between PhoP and SigH fails to impact redox-dependent gene expression. This is in striking contrast to our previous results showing PhoP-dependent SigE recruitment within acid-inducible mycobacterial promoters to maintain pH homeostasis. Our subsequent results demonstrate reduced PhoP-SigH interaction in the presence of diamide and enhanced PhoP-SigE interaction under low pH. These contrasting results uncover the underlying mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis. M. tuberculosis encounters reductive stress under acidic pH. To investigate the mechanism of coupled stress response, we show that PhoP plays a major role in mycobacterial redox stress response. We observed a strong correlation of -dependent redox-active expression of thioredoxin genes, a major mycobacterial antioxidant system. Further probing of functioning of regulators revealed that while PhoP controls pH homeostasis via its interaction with SigE, direct recruitment of SigH, but not PhoP-SigH interaction, controls expression of thioredoxin genes. These strikingly contrasting results showing enhanced PhoP-SigE interaction under acidic pH and reduced PhoP-SigH interaction under redox conditions uncover the underlying novel mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis.
结核分枝杆菌在宿主内遇到许多应激条件,但它如何能够启动耦合应激反应尚不清楚。越来越多的证据表明,在酸性 pH 下,结核分枝杆菌调节氧化还原稳态。为了剖析对多种应激条件的反应的机制细节,我们在这里研究了细胞外 sigma 因子与 PhoP 的连接性的重要性。我们表明 PhoP 影响巯基乙胺的氧化还原状态,并且 H37RvΔ缺失突变菌株比野生型杆菌对氧化还原应激的敏感性显著更高。为了探究两个调节剂 PhoP 和氧化还原活性 sigma 因子 SigH 如何有助于氧化还原稳态,我们表明 SigH 控制氧化还原活性硫氧还蛋白基因的表达,这是主要的分枝杆菌抗氧化系统,并且在氧化还原应激下,SigH(而不是 PhoP)被募集到靶启动子上。与这些结果一致,PhoP 和 SigH 之间的相互作用不会影响依赖于氧化还原的基因表达。这与我们之前的结果形成鲜明对比,我们之前的结果表明 PhoP 依赖 SigE 在酸性诱导的分枝杆菌启动子中募集以维持 pH 稳态。我们随后的结果表明,在存在双硫胺的情况下,PhoP-SigH 相互作用减少,而在低 pH 下,PhoP-SigE 相互作用增强。这些对比结果揭示了分枝杆菌适应程序的潜在机制,将低 pH 与维持氧化还原稳态耦合。结核分枝杆菌在酸性 pH 下遇到还原应激。为了研究耦合应激反应的机制,我们表明 PhoP 在分枝杆菌氧化还原应激反应中起主要作用。我们观察到与 thioredoxin 基因(主要的分枝杆菌抗氧化系统)的氧化还原活性表达的强烈相关性。进一步探究调节剂的功能表明,虽然 PhoP 通过与 SigE 的相互作用控制 pH 稳态,但 SigH 的直接募集(而不是 PhoP-SigH 相互作用)控制 thioredoxin 基因的表达。这些引人注目的对比结果表明,在酸性 pH 下增强 PhoP-SigE 相互作用和在氧化还原条件下减少 PhoP-SigH 相互作用揭示了分枝杆菌适应程序的潜在新机制,将低 pH 与维持氧化还原稳态耦合。