Suppr超能文献

基于机器学习的苯萘胺型抗氧化剂分子设计。

Machine-learning-assisted molecular design of phenylnaphthylamine-type antioxidants.

机构信息

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.

出版信息

Phys Chem Chem Phys. 2022 Jun 1;24(21):13399-13410. doi: 10.1039/d2cp00083k.

Abstract

In this study, a total of 302 molecular structures of phenylnaphthylamine antioxidants based on -phenyl-1-naphthylamine and -phenyl-2-naphthylamine skeletons with various substituents were modeled by exhaustive methods. Antioxidant parameters, including the hydrogen dissociation energy, solubility parameter, and binding energy, were calculated through molecular simulations. Then, a group decomposition scheme was determined to decompose 302 antioxidants. The antioxidant parameters and decomposition results constituted machine-learning data sets. Using an artificial neural network model, a correlation coefficient between the predicted and true values above 0.88 and an average relative error within 6% were achieved. Random forest models were used to analyze the factors affecting antioxidant activity from chemical and physical perspectives; the results showed that amino and alkyl groups were conducive to improving antioxidant performance. Moreover, substituent positions 1, 7, and 10 of -phenyl-1-naphthylamine and 3, 7, and 10 of -phenyl-2-naphthylamine were found to be the optimal positions for modifications to improve antioxidant activity. Two potentially efficient phenylnaphthylamine antioxidant structures were proposed and their antioxidant parameters were also calculated; the hydrogen dissociation energy and solubility parameter decreased by more than 9% and 7%, respectively, whereas the binding energy increased by more than 16% compared with the benchmark of -phenyl-1-naphthylamine. These results indicate that molecular simulation and machine learning could provide alternative tools for the molecular design of new antioxidants.

摘要

在这项研究中,通过穷举法对基于 - 苯基-1-萘胺和 - 苯基-2-萘胺骨架、具有各种取代基的 302 种苯萘胺抗氧化剂的分子结构进行了建模。通过分子模拟计算了抗氧化剂参数,包括氢离解能、溶解度参数和结合能。然后,确定了一个基团分解方案来分解 302 种抗氧化剂。抗氧化剂参数和分解结果构成了机器学习数据集。使用人工神经网络模型,实现了预测值与真实值之间的相关系数大于 0.88,平均相对误差在 6%以内。随机森林模型用于从化学和物理角度分析影响抗氧化活性的因素;结果表明,氨基和烷基基团有利于提高抗氧化性能。此外,- 苯基-1-萘胺的 1、7 和 10 位以及 - 苯基-2-萘胺的 3、7 和 10 位被发现是改善抗氧化活性的最佳取代位置。提出了两种潜在有效的苯萘胺抗氧化剂结构,并计算了它们的抗氧化参数;与 - 苯基-1-萘胺的基准相比,氢离解能和溶解度参数分别降低了 9%以上和 7%,而结合能增加了 16%以上。这些结果表明,分子模拟和机器学习可以为新型抗氧化剂的分子设计提供替代工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验