Suppr超能文献

机器学习辅助二苯胺抗氧化剂分子结构设计

Machine Learning-Assisted Design of Molecular Structure of Diphenylamine Antioxidants.

作者信息

Song Meng, Hu Zhenyu, Wang Meng, Jia Shaopei, Cao Fengyi, Duan Lei, Qin Qi, Jiao Mingli, Wang Runguo

机构信息

School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.

School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, P. R. China.

出版信息

ACS Omega. 2025 Jul 23;10(30):33063-33078. doi: 10.1021/acsomega.5c02343. eCollection 2025 Aug 5.

Abstract

This study calculated the bond dissociation energy (BDE), solubility parameter (δ), binding energy ( ), and other parameters of 96 diphenylamine antioxidants using molecular simulations to verify the quantitative relationship between the structure and properties of antioxidants and obtained 288 antioxidant performance parameters to build a machine learning (ML) data set. A group-partitioning scheme consisting of 10 group descriptors and 3 molecular connectivity chi index descriptors was established. The antioxidant parameters were combined with the partitioning results to form a complete ML data set. An artificial neural network model (ANN) was used to quantize the structure-performance relationship of antioxidants. The correlation coefficient () between the predicted value and the true value was greater than 0.84, the mean relative error (ARE) of BDE was less than 4.53%, the ARE of δ was less than 1.21%, and the ARE of was less than 14.76%. The random forest (RF) model was used to study the contribution of each descriptor to oxidation resistance and analyze the effects of different substituent locations. The results of the chemical and physical analyses showed that the introduction of alkyl chains improved the performance of the antioxidants. An alkyl chain with nine carbons in the main chain was grafted to site 4 as a new substituent, and a new molecular structure of diphenylamine antioxidants was designed. Compared with the skeleton structure, the BDE of the newly designed antioxidant decreased by 1.18%, δ decreased by 6.11%, and increased by 83.44%. This demonstrates the effectiveness of the ML-assisted molecular design of antioxidants.

摘要

本研究通过分子模拟计算了96种二苯胺抗氧化剂的键解离能(BDE)、溶解度参数(δ)、结合能( )等参数,以验证抗氧化剂结构与性能之间的定量关系,并获得288个抗氧化性能参数来构建机器学习(ML)数据集。建立了一种由10个基团描述符和3个分子连接性χ指数描述符组成的基团划分方案。将抗氧化剂参数与划分结果相结合,形成完整的ML数据集。使用人工神经网络模型(ANN)对抗氧化剂的结构-性能关系进行量化。预测值与真实值之间的相关系数( )大于0.84,BDE的平均相对误差(ARE)小于4.53%,δ的ARE小于1.21%, 的ARE小于14.76%。使用随机森林(RF)模型研究每个描述符对抗氧化性的贡献,并分析不同取代基位置的影响。化学和物理分析结果表明,引入烷基链可提高抗氧化剂的性能。将主链上含有9个碳的烷基链接枝到4号位作为新的取代基,设计了一种新型二苯胺抗氧化剂分子结构。与骨架结构相比,新设计的抗氧化剂的BDE降低了1.18%,δ降低了6.11%, 增加了83.44%。这证明了ML辅助抗氧化剂分子设计的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea5/12332773/88f03d263f68/ao5c02343_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验