Suppr超能文献

基于过程的建模如何提高油棕种植园泥炭 CO 和 NO 排放因子?

How can process-based modeling improve peat CO and NO emission factors for oil palm plantations?

机构信息

Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia.

Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia.

出版信息

Sci Total Environ. 2022 Sep 15;839:156153. doi: 10.1016/j.scitotenv.2022.156153. Epub 2022 May 21.

Abstract

Oil palm plantations on peat and associated drainage generate sizeable GHG emissions. Current IPCC default emission factors (EF) for oil palm on organic soil are based on a very limited number of observations from young plantations, thereby resulting in large uncertainties in emissions estimates. To explore the potential of process-based modeling to refine oil palm peat CO and NO EFs, we simulated peat GHG emissions and biogeophysical variables over 30 years in plantations of Central Kalimantan, Indonesia. The DNDC model simulated well the magnitude of C inputs (litterfall and root mortality) and dynamics of annual heterotrophic respiration and peat decomposition NO fluxes. The modeled peat onsite CO-C EF was lower than the IPCC default (11 Mg C ha yr) and decreased from 7.7 ± 0.4 Mg C ha yr in the first decade to 3.0 ± 0.2 and 1.8 ± 0.3 Mg C ha yr in the second and third decades of the rotation. The modeled NO-N EF from peat decomposition was higher than the IPCC default (1.2 kg N ha yr) and increased from 3.5 ± 0.3 kg N ha yr in the first decade to 4.7-4.6 ± 0.5 kg N ha yr in the following ones. Modeled fertilizer-induced NO emissions were minimal and much less than 1.6% of N inputs recommended by the IPCC in wet climates regardless of soil type. Temporal variations in EFs were strongly linked to soil C:N ratio and soil mineral N content for CO and fertilizer-induced NO emissions, and to precipitation, water table level and soil NH content for peat decomposition NO emissions. These results suggest that current IPCC EFs for oil palm on organic soil could over-estimate peat onsite CO emissions and underestimate peat decomposition NO emissions and that temporal variation in emissions should be considered for further improvement of EFs.

摘要

油棕种植园在泥炭地上和相关的排水系统会产生大量的温室气体排放。目前,国际气候变化专门委员会(IPCC)针对有机土壤上油棕的默认排放因子(EF)是基于非常有限的年轻种植园观测数据得出的,因此导致排放估算存在很大的不确定性。为了探索基于过程的模型在改进油棕泥炭地 CO 和 NO 排放因子方面的潜力,我们在印度尼西亚中加里曼丹的种植园中模拟了 30 年的泥炭地温室气体排放和生物地球物理变量。DNDC 模型很好地模拟了 C 输入(凋落物和根系死亡)的数量以及年异养呼吸和泥炭分解 NO 通量的动态。模型化的泥炭地原地 CO-C EF 低于国际气候变化专门委员会的默认值(11 Mg C ha yr),并从第一个十年的 7.7 ± 0.4 Mg C ha yr 降低到第二个十年的 3.0 ± 0.2 Mg C ha yr 和第三个十年的 1.8 ± 0.3 Mg C ha yr。模型化的泥炭分解产生的 NO-N EF 高于国际气候变化专门委员会的默认值(1.2 kg N ha yr),并从第一个十年的 3.5 ± 0.3 kg N ha yr 增加到接下来的十年的 4.7-4.6 ± 0.5 kg N ha yr。模型化的肥料诱导的 NO 排放最小,远远低于国际气候变化专门委员会在湿润气候下推荐的 1.6%的 N 输入量,无论土壤类型如何。EF 的时间变化与 CO 和肥料诱导的 NO 排放的土壤 C:N 比和土壤矿质 N 含量以及泥炭分解 NO 排放的降水、地下水位和土壤 NH 4 +含量密切相关。这些结果表明,目前国际气候变化专门委员会针对有机土壤上油棕的 EF 可能高估了泥炭地原地 CO 排放,低估了泥炭分解产生的 NO 排放,并且应该考虑排放的时间变化来进一步改进 EF。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验