Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain.
J Neurosci. 2022 Jul 6;42(27):5346-5360. doi: 10.1523/JNEUROSCI.2258-21.2022. Epub 2022 May 24.
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an activity-dependent fashion. Using these mice, we identify a subpopulation of -expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism. It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
运动技能学习通常与包括大脑皮质和小脑皮质以及基底神经节核在内的脑区相关。对于海马体在运动技能的获得和存储中的作用知之甚少。在这里,我们发现与未训练的小鼠相比,长期接受加速旋转棒训练的小鼠显示出海马体转录变化明显,CA1 区的锥体神经元活动减少。然后,我们使用可以以活动依赖的方式永久标记神经簇的小鼠。使用这些小鼠,我们在旋转棒任务中鉴定出 CA1 中表达 的一小部分锥体神经元在短期(STT)和长期(LTT)训练的小鼠中被激活。当 CA1 中的 下调或这些神经元簇被耗尽时,运动学习得到改善,而它们的化学遗传刺激则会损害运动学习表现。因此, 在加速旋转棒任务期间组织特定的 CA1 神经元簇,从而限制运动学习。这些证据突出了海马体在控制这种类型的学习中的作用,并且我们提供了一种可能的潜在机制。在神经科学中,解析在新信息编码过程中记忆系统背后的特定回路是一个主要课题。然而,海马体在运动学习控制中的潜在作用及其潜在机制尚未得到充分解决。在本工作中,我们展示了海马体如何对运动学习做出反应,以及 分子如何成为控制运动协调表现速度的主要因素之一。