Suppr超能文献

重新激活预测了无偏长期认知图的巩固。

Reactivation predicts the consolidation of unbiased long-term cognitive maps.

机构信息

Columbia Neuroscience Department, Columbia University Medical Center, New York, NY, USA.

Center for Learning and Memory, University of Texas, Austin, TX, USA.

出版信息

Nat Neurosci. 2021 Nov;24(11):1574-1585. doi: 10.1038/s41593-021-00920-7. Epub 2021 Oct 18.

Abstract

Spatial memories that can last a lifetime are thought to be encoded during 'online' periods of exploration and subsequently consolidated into stable cognitive maps through their 'offline' reactivation. However, the mechanisms and computational principles by which offline reactivation stabilize long-lasting spatial representations remain poorly understood. Here, we employed simultaneous fast calcium imaging and electrophysiology to track hippocampal place cells over 2 weeks of online spatial reward learning behavior and offline resting. We describe that recruitment to persistent network-level offline reactivation of spatial experiences in mice predicts the future representational stability of place cells days in advance of their online reinstatement. Moreover, while representations of reward-adjacent locations are generally more stable across days, offline-reactivation-related stability is, conversely, most prominent for reward-distal locations. Thus, while occurring on the tens of milliseconds timescale, offline reactivation is uniquely associated with the stability of multiday representations that counterbalance the overall reward-adjacency bias, thereby predicting the stabilization of cognitive maps that comprehensively reflect entire underlying spatial contexts. These findings suggest that post-learning offline-related memory consolidation plays a complimentary and computationally distinct role in learning compared to online encoding.

摘要

被认为可以持续一生的空间记忆是在“在线”探索期间编码的,随后通过“离线”重新激活将其整合到稳定的认知图中。然而,离线重新激活稳定长期空间表示的机制和计算原理仍知之甚少。在这里,我们采用同时进行的快速钙成像和电生理学方法,在两周的在线空间奖励学习行为和离线休息期间跟踪海马体位置细胞。我们描述了在小鼠中,对空间经验的持久网络级离线重新激活的招募可以提前几天预测位置细胞的未来表示稳定性。此外,虽然奖励相邻位置的表示在几天内通常更稳定,但相反,与离线重新激活相关的稳定性在奖励较远的位置最为明显。因此,虽然发生在数十毫秒的时间尺度上,但离线重新激活与抵消整体奖励相邻偏差的多日表示的稳定性独特相关,从而预测了全面反映整个基础空间上下文的认知图的稳定化。这些发现表明,与在线编码相比,学习后与离线相关的记忆巩固在学习中发挥了补充和计算上不同的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验