Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland.
Institute of Oceanography, University of Gdansk, Gdynia, Poland.
Geobiology. 2022 Jul;20(4):575-596. doi: 10.1111/gbi.12496. Epub 2022 May 24.
Biomineralization is of great importance in ecosystem functioning and for the use of carbonate skeleton as environmental proxies. Skeletal formation is controlled to different degrees by environmental parameters and biological mechanisms. While salinity is one of the most important factors affecting ecological processes and ocean physiochemistry, the goal of this investigation was to identify how salinity influences the mineral type and the concentrations of chemical elements in the whole skeleton of invertebrates from the Baltic Sea. In this model system, the surface salinity decreases from marine values (27.2) to almost fresh water (6.1). The selected organisms, mussels (Mytilus spp.), bryozoans (Einhornia crustulenta, Cribrilina cryptooecium, Cryptosula pallasiana, Electra pilosa, Escharella immersa), barnacles (Amphibalanus improvisus, Semibalanus balanoides), and polychaetes (Spirorbis tridentatus), precipitated skeleton composed of calcite and aragonite, most likely as a result of various interacting environmental and biological factors. The concentrations of all elements in bulk skeleton were highly variable between species from the same location, underlining the role of the biological mechanisms in skeletal formation. The concentration of Ca, Mg, Sr, and Na increased in the bulk skeleton of stenohaline organisms with increasing salinity, while in the bulk skeleton of euryhaline species, only the concentration of Na increased with increasing salinity. The concentrations of Mn, Ba, Cu, Pb, Y, V, Cd, and U in the skeleton of euryhaline species generally decreased at higher salinities, most likely reflecting the lower bioavailability of elements at higher salinity. However, the concentrations of elements in the skeleton of stenohaline organisms were highly variable with no clear salinity impact. This study suggests that, although the composition of skeleton of calcifying organisms along the salinity gradient of the Baltic Sea is to a large extent affected by biological mechanisms, it also reflects the responses to environmental conditions.
生物矿化在生态系统功能和利用碳酸盐骨骼作为环境示踪剂方面非常重要。骨骼的形成受到环境参数和生物机制的不同程度控制。虽然盐度是影响生态过程和海洋物理化学的最重要因素之一,但本研究的目的是确定盐度如何影响波罗的海无脊椎动物整个骨骼的矿物类型和化学元素浓度。在这个模型系统中,表面盐度从海洋值(27.2)降低到几乎淡水(6.1)。选择的生物体包括贻贝(Mytilus spp.)、苔藓虫(Einhornia crustulenta、Cribrilina cryptooecium、Cryptosula pallasiana、Electra pilosa、Escharella immersa)、藤壶(Amphibalanus improvisus、Semibalanus balanoides)和多毛类(Spirorbis tridentatus),它们沉淀的骨骼由方解石和霰石组成,这很可能是各种相互作用的环境和生物因素的结果。同一地点同种生物的整体骨骼中所有元素的浓度在物种之间差异很大,这突出了生物机制在骨骼形成中的作用。在狭盐性生物的整体骨骼中,随着盐度的增加,Ca、Mg、Sr 和 Na 的浓度增加,而在广盐性物种的整体骨骼中,只有 Na 的浓度随着盐度的增加而增加。在广盐性物种的骨骼中,Mn、Ba、Cu、Pb、Y、V、Cd 和 U 的浓度通常随着盐度的升高而降低,这很可能反映了在较高盐度下元素的生物利用度降低。然而,狭盐性生物的骨骼中元素的浓度变化很大,没有明显的盐度影响。本研究表明,尽管波罗的海沿盐度梯度的钙化生物骨骼的组成在很大程度上受到生物机制的影响,但它也反映了对环境条件的响应。