Suppr超能文献

生物矿化可塑性和环境异质性预测基础物种对未来变化的地理弹性模式。

Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change.

机构信息

Department of Earth Sciences, University of Cambridge, Cambridge, UK.

British Antarctic Survey, Cambridge, UK.

出版信息

Glob Chang Biol. 2019 Dec;25(12):4179-4193. doi: 10.1111/gcb.14758. Epub 2019 Aug 20.

Abstract

Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within-region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low-salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic-enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high-latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade-offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.

摘要

尽管物种对环境变化的敏感性的地理模式是由相互作用的多种胁迫因素定义的,但对于塑造生物脆弱性区域差异的补偿过程知之甚少。在这里,我们在 30°纬度范围内(3334 公里)检查了温度、盐度和食物供应异质环境梯度下生物矿化的大规模空间变化,以检验从幼体到大成体的碳酸钙壳生产和组成的可塑性是否调节了贻贝 Mytilus edulis 和 M. trossulus 等关键基础物种对气候变化的恢复力的地理模式。我们发现壳钙化向高纬度减少,与温带地区相比,极地贻贝产生的壳更薄,有机含量更高。盐度是解释贻贝壳沉积、矿物质和有机组成的区域内差异的最佳预测因子。在极地、亚极地和波罗的海低盐环境中,贻贝产生的壳很薄,外部有机层(角质层)较厚,方解石(棱柱层,而不是文石)和有机基质的比例增加,为在更具腐蚀性的水中提供更高的抗溶解能力。相反,在温带、高盐度的环境中,形成了更厚、更钙化的壳,文石(珍珠层)的比例更高,这表明在增加的捕食压力下提供了更好的保护。盐度和食物供应的相互作用效应对贻贝壳组成的预测表明,在未来的环境条件下,角质层和富含有机的棱柱层的沉积会增加,这表明从海洋酸化中增加对高纬度种群的保护能力。这些发现支持生物矿化可塑性作为一种潜在的有利补偿机制,使贻贝物种具有在未来环境中对生物和非生物条件的区域变化进行壳沉积的定量和定性权衡的保护能力。我们的工作表明,补偿机制驱动对多种胁迫因素空间结构的可塑性反应,可以定义物种对全球环境变化的意外恢复力的地理模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验