Suppr超能文献

人工智能在放射学项目中的扩展 - 原因与后果。

Scaling AI Projects for Radiology - Causes and Consequences.

机构信息

UIT - The Arctic University of Norway, Tromsø.

Norwegian Centre for E-health Research, University Hospital of North Norway, Tromsø.

出版信息

Stud Health Technol Inform. 2022 May 25;294:13-17. doi: 10.3233/SHTI220387.

Abstract

Artificial intelligence (AI) for radiology has the potential to handle an ever-increasing volume of imaging examinations. However, the implementation of AI for clinical practice has not lived up to expectations. We suggest that a key problem with AI projects in radiology is that high expectations associated with new and unproven AI technology tend to scale the projects in ways that challenge their anchoring in local practice and their initial purpose of serving local needs. Empirically, we focus on the procurement of an AI solution for radiology practice at a large health trust in Norway where it was intended that AI technology would be used to process the screening of images more effectively. Theoretically, we draw on the information infrastructure literature, which is concerned with scaling innovative technologies from local settings, with a limited number of users, to broad-use contexts with many users.

摘要

人工智能(AI)在放射学中有潜力处理不断增加的影像学检查量。然而,人工智能在临床实践中的应用并未达到预期。我们认为,放射学中 AI 项目的一个关键问题是,与新的未经证实的 AI 技术相关的高期望往往会使项目以挑战其在当地实践中的基础以及其最初为满足当地需求而服务的方式扩展。从经验上看,我们关注的是在挪威一家大型医疗信托机构采购用于放射科实践的 AI 解决方案,其目的是利用人工智能技术更有效地处理图像筛查。从理论上讲,我们借鉴了关注将创新技术从本地设置、用户数量有限扩展到用户众多的广泛使用环境的信息基础设施文献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验