Suppr超能文献

人工智能在中低收入国家:创新全球放射健康。

Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology.

机构信息

From RAD-AID International, 8004 Ellingson Dr, Chevy Chase, MD 20815 (D.J.M., M.P.C., E.P., G.B., J.R.S., V.L.M., A.E., A.S., F.D.); Department of Radiology and Medical Imaging, Denver Health and Hospital Authority, Denver, Colo (E.P.); Departments of Radiology and Global Health, University of Washington, Seattle, Wash (J.R.S.); Fred Hutchinson Cancer Research Center, Seattle, Wash (J.R.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.L.M.); Department of Radiology, University of Pennsylvania Health System, Philadelphia, Pa (A.E.); and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Md (F.D.).

出版信息

Radiology. 2020 Dec;297(3):513-520. doi: 10.1148/radiol.2020201434. Epub 2020 Oct 6.

Abstract

Scarce or absent radiology resources impede adoption of artificial intelligence (AI) for medical imaging by resource-poor health institutions. They face limitations in local equipment, personnel expertise, infrastructure, data-rights frameworks, and public policies. The trustworthiness of AI for medical decision making in global health and low-resource settings is hampered by insufficient data diversity, nontransparent AI algorithms, and resource-poor health institutions' limited participation in AI production and validation. RAD-AID's three-pronged integrated strategy for AI adoption in resource-poor health institutions is presented, which includes clinical radiology education, infrastructure implementation, and phased AI introduction. This strategy derives from RAD-AID's more-than-a-decade experience as a nonprofit organization developing radiology in resource-poor health institutions, both in the United States and in low- and middle-income countries. The three components synergistically provide the foundation to address health care disparities. Local radiology personnel expertise is augmented through comprehensive education. Software, hardware, and radiologic and networking infrastructure enables radiology workflows incorporating AI. These educational and infrastructure developments occur while RAD-AID delivers phased introduction, testing, and scaling of AI via global health collaborations.

摘要

放射学资源稀缺或缺失阻碍了资源匮乏的医疗机构采用人工智能(AI)进行医学成像。它们在本地设备、人员专业知识、基础设施、数据权利框架和公共政策方面受到限制。在全球卫生和资源匮乏环境中,人工智能在医疗决策中的可信度受到数据多样性不足、人工智能算法不透明以及资源匮乏的医疗机构在人工智能生产和验证方面参与有限的阻碍。RAD-AID 提出了在资源匮乏的医疗机构中采用人工智能的三管齐下的综合战略,包括临床放射学教育、基础设施实施和分阶段引入人工智能。该战略源自 RAD-AID 作为一个非营利组织在资源匮乏的医疗机构中发展放射学的十多年经验,包括在美国和低收入和中等收入国家。这三个组成部分协同提供了解决医疗保健差距的基础。通过全面教育增强当地放射科人员的专业知识。软件、硬件以及放射学和网络基础设施使包含人工智能的放射学工作流程成为可能。这些教育和基础设施的发展伴随着 RAD-AID 通过全球卫生合作分阶段引入、测试和扩展人工智能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验