Suppr超能文献

行走时对速度扰动的运动轨迹表明,腿部角度和长度存在模块化的任务级控制。

Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.

作者信息

Schwaner M J, Nishikawa K C, Daley M A

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697.

Center for Integrative Movement Sciences, University of California, Irvine, CA 92697.

出版信息

Integr Comp Biol. 2022 May 24. doi: 10.1093/icb/icac057.

Abstract

Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated and mechanical perturbation responses. Here, we use treadmill belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force-length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt speed perturbations.

摘要

在复杂地形中行走需要底物、肌肉骨骼系统和感觉运动系统之间的动态相互作用。目前的扰动研究大多使用可见的地形高度扰动,这使我们无法区分前馈控制、反馈介导和机械扰动反应的神经机械贡献。在这里,我们使用跑步机皮带速度扰动来仅对足部速度进行有针对性的扰动,并且在站立开始时不会因地形导致关节姿势和腿部负荷的变化。基于先前研究表明神经机械控制存在近远梯度,我们假设与近端关节相比,远端关节在关节运动学上会表现出更大的变化。此外,我们预计鸟类会使用前馈策略来增加步态的内在稳定性。为了验证这些假设,七只成年珍珠鸡在电动跑步机上行走时进行了视频记录,包括稳定试验和扰动试验。扰动包括反复暴露于跑步机皮带速度的减速和加速。令人惊讶的是,我们发现尽管跑步机皮带对足部速度有很大扰动,但关节角轨迹和质心波动仍然非常相似。髋关节角轨迹变化最大,鸟类在所有受扰动的步幅中都采用了稍微更弯曲的姿势。此外,我们观察到所有步幅的步长增加,这与控制策略中的前馈变化一致。速度扰动主要影响站立和摆动的时间,在减速后的步幅中运动学变化最大。我们的研究结果不支持关节控制中近远梯度的一般假设,因为远端关节运动学基本保持不变。相反,我们发现腿部角轨迹以及站立和摆动的时间对这种特定扰动最敏感,而腿长驱动基本保持不变。我们的结果与腿长和腿角驱动的模块化任务级控制一致,每种驱动模式具有不同的神经机械控制和扰动敏感性。远端关节似乎对垂直负荷的变化敏感,但对足部前后速度不敏感。未来的研究方向应包括肌肉激活和力-长度动力学的体内研究,以提供更直接的证据证明针对皮带速度扰动的稳定性感觉运动控制策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验