Jhajhria Deepika, Tiwari Pranjala, Chandra Ramesh
Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, India.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):26162-26170. doi: 10.1021/acsami.2c03213. Epub 2022 May 25.
Microsupercapacitors are gaining increasing interest for energy storage in miniaturized electronic devices. However, the production of porous electrode material with standard microfabrication techniques is a big problem. Here, we report on the oblique angle deposition of highly porous and nanostructured columnar titanium nitride (TiN) films on silicon substrate using magnetron sputtering for high-performance microsupercapacitors. The intercolumnar porosity of the sputtered TiN films can be systematically controlled as a function of the oblique angle α achieved by tilting the substrate. The denser morphologies in TiN films deposited at α = 0° lead to moderate capacitive behavior in a 1 M NaSO electrolyte solution. Meanwhile, a high areal capacitance of 17.5 mF·cm is obtained for a 60° oblique angle due to high intercolumnar porosity in films, which increases the specific surface area and facilitates easy electrolyte permeation. The electrodes also retain 88.2% of the initial specific capacitance after 10,000 charging/discharging cycles. A planar interdigitated microsupercapacitor has been subsequently fabricated based on an optimized TiN thin film serving as both an efficient electrode and a current collector. TThe device was electrochemically tested using polyvinyl alcohol (PVA)-Na2SO4 hydrogel electrolyte allowing a voltage window of 1.8 V and showed energy densities of 0.46 μWh·cm while maintaining a high-power density of 703.12 μWh·cm. This work gives insight into the use of oblique angle deposition for obtaining highly porous films of other electrode materials for microsupercapacitor applications with the advantage of using a simple microfabrication process.
微型超级电容器在小型化电子设备的能量存储方面越来越受到关注。然而,用标准微加工技术生产多孔电极材料是一个大问题。在此,我们报告了使用磁控溅射在硅衬底上倾斜角沉积高度多孔且具有纳米结构的柱状氮化钛(TiN)薄膜,用于高性能微型超级电容器。溅射的TiN薄膜的柱间孔隙率可以根据通过倾斜衬底实现的倾斜角α进行系统控制。在α = 0°沉积的TiN薄膜中较致密的形态导致在1 M NaSO电解质溶液中具有中等的电容行为。同时,由于薄膜中高的柱间孔隙率,在60°倾斜角下获得了17.5 mF·cm的高面积电容,这增加了比表面积并便于电解质渗透。电极在10000次充放电循环后还保留了初始比电容的88.2%。随后基于优化的TiN薄膜制造了一种平面叉指式微型超级电容器,该薄膜既用作高效电极又用作集流体。该器件使用聚乙烯醇(PVA)-Na2SO4水凝胶电解质进行了电化学测试,允许1.8 V的电压窗口,并且在保持703.12 μWh·cm的高功率密度的同时显示出0.46 μWh·cm的能量密度。这项工作为利用倾斜角沉积获得用于微型超级电容器应用的其他电极材料的高度多孔薄膜提供了见解,其优点是使用简单的微加工工艺。