Singh Shivam, Stiwinter Kenneth Christopher, Singh Jitendra Pratap, Zhao Yiping
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
Nanomaterials (Basel). 2025 Jul 21;15(14):1136. doi: 10.3390/nano15141136.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core-shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO, CO, HS, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies.
掠角沉积(GLAD)已成为一种多功能且强大的纳米制造技术,可通过精确控制纳米结构的几何形状、孔隙率和材料成分来开发下一代气体传感器。通过动态地倾斜和旋转衬底,GLAD有助于制造高度多孔的各向异性纳米结构,如排列、倾斜、之字形、螺旋形和多层纳米棒,这些纳米结构具有可调节的表面积和为气体检测优化的扩散路径。本文综述全面总结了基于GLAD的气体传感器设计的最新进展,重点关注结构工程和材料整合如何结合以提高传感器性能。关键的材料策略包括构建异质结和核壳结构、可控掺杂以及使用贵金属或金属氧化物进行纳米颗粒修饰,以增强电荷转移、催化活性和氧化还原响应性。GLAD制造的纳米结构已有效地应用于多种气体传感模式,包括电阻式、电容式、压电式和光学平台,其高纵横比、定制的孔隙率和富含缺陷的表面有助于增强气体吸附动力学和高效的信号转导。这些器件对包括NO、CO、HS和挥发性有机化合物(VOCs)在内的一系列分析物表现出高灵敏度和选择性,检测限通常达到十亿分之一水平。新兴的创新,如光辅助传感以及与人工智能集成用于数据分析和模式识别,进一步扩展了基于GLAD的系统用于多功能、实时和自适应传感的能力。最后,讨论了当前面临的挑战和未来的研究方向,强调了GLAD作为下一代气体传感技术可扩展平台的前景。