文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.

作者信息

Bian Chuang, Wang Xubin, Su Yanchi, Wang Yunhe, Wong Ka-Chun, Li Xiangtao

机构信息

School of Artificial Intelligence, Jilin University, Changchun, 130000, Jilin, China.

School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China.

出版信息

Comput Struct Biotechnol J. 2022 Apr 27;20:2181-2197. doi: 10.1016/j.csbj.2022.04.023. eCollection 2022.


DOI:10.1016/j.csbj.2022.04.023
PMID:35615016
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9108753/
Abstract

With the development of next-generation sequencing technologies, single-cell RNA sequencing (scRNA-seq) has become one indispensable tool to reveal the wide heterogeneity between cells. Clustering is a fundamental task in this analysis to disclose the transcriptomic profiles of single cells and is one of the key computational problems that has received widespread attention. Recently, many clustering algorithms have been developed for the scRNA-seq data. Nevertheless, the computational models often suffer from realistic restrictions such as numerical instability, high dimensionality and computational scalability. Moreover, the accumulating cell numbers and high dropout rates bring a huge computational challenge to the analysis. To address these limitations, we first provide a systematic and extensive performance evaluation of four feature selection methods and nine scRNA-seq clustering algorithms on fourteen real single-cell RNA-seq datasets. Based on this, we then propose an accurate single-cell data analysis via Ensemble Feature Selection based Clustering, called scEFSC. Indeed, the algorithm employs several unsupervised feature selections to remove genes that do not contribute significantly to the scRNA-seq data. After that, different single-cell RNA-seq clustering algorithms are proposed to cluster the data filtered by multiple unsupervised feature selections, and then the clustering results are combined using weighted-based meta-clustering. We applied scEFSC to the fourteen real single-cell RNA-seq datasets and the experimental results demonstrated that our proposed scEFSC outperformed the other scRNA-seq clustering algorithms with several evaluation metrics. In addition, we established the biological interpretability of scEFSC by carrying out differential gene expression analysis, gene ontology enrichment and KEGG analysis. scEFSC is available at https://github.com/Conan-Bian/scEFSC.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/5457d658136c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/37686f9866e6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/4cf4587d6084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/8b04dd07b9c5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/c440ae569570/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/538cef06863a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/b1a6ae619ca5/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/c898e43cec2a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/63f5a3c77922/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/ddb3526ca5b3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/5457d658136c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/37686f9866e6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/4cf4587d6084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/8b04dd07b9c5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/c440ae569570/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/538cef06863a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/b1a6ae619ca5/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/c898e43cec2a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/63f5a3c77922/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/ddb3526ca5b3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b936/9108753/5457d658136c/gr10.jpg

相似文献

[1]
scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.

Comput Struct Biotechnol J. 2022-4-27

[2]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[3]
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.

BMC Bioinformatics. 2019-12-24

[4]
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.

PLoS Comput Biol. 2022-12

[5]
scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.

Brief Bioinform. 2022-3-10

[6]
scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[7]
SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data.

Brief Funct Genomics. 2023-7-17

[8]
jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.

Brief Bioinform. 2021-9-2

[9]
Boosting scRNA-seq data clustering by cluster-aware feature weighting.

BMC Bioinformatics. 2021-6-2

[10]
Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.

Brief Bioinform. 2022-3-10

引用本文的文献

[1]
scICE: enhancing clustering reliability and efficiency of scRNA-seq data with multi-cluster label consistency evaluation.

Nat Commun. 2025-7-2

[2]
scEVE: a single-cell RNA-seq ensemble clustering algorithm capitalizing on the differences of predictions between multiple clustering methods.

NAR Genom Bioinform. 2025-6-9

[3]
On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.

PLoS One. 2023

[4]
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data.

Life Sci Alliance. 2023-12

[5]
Cell Type Annotation Model Selection: General-Purpose vs. Pattern-Aware Feature Gene Selection in Single-Cell RNA-Seq Data.

Genes (Basel). 2023-2-26

本文引用的文献

[1]
High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.

Brief Bioinform. 2022-1-17

[2]
Elucidating transcriptomic profiles from single-cell RNA sequencing data using nature-inspired compressed sensing.

Brief Bioinform. 2021-9-2

[3]
Deep embedded clustering with multiple objectives on scRNA-seq data.

Brief Bioinform. 2021-9-2

[4]
Fast and precise single-cell data analysis using a hierarchical autoencoder.

Nat Commun. 2021-2-15

[5]
Sc-GPE: A Graph Partitioning-Based Cluster Ensemble Method for Single-Cell.

Front Genet. 2020-12-15

[6]
Evolving Transcriptomic Profiles From Single-Cell RNA-Seq Data Using Nature-Inspired Multiobjective Optimization.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[7]
SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection.

Genome Res. 2020-2

[8]
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.

BMC Bioinformatics. 2019-12-24

[9]
SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble.

Nucleic Acids Res. 2020-1-10

[10]
Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering.

IEEE/ACM Trans Comput Biol Bioinform. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索