Suppr超能文献

scEVE:一种利用多种聚类方法预测差异的单细胞RNA测序集成聚类算法。

scEVE: a single-cell RNA-seq ensemble clustering algorithm capitalizing on the differences of predictions between multiple clustering methods.

作者信息

Asloudj Yanis, Mougin Fleur, Thébault Patricia

机构信息

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France.

Univ. Bordeaux, INSERM , BPH, U1219, F-33000 Bordeaux, France.

出版信息

NAR Genom Bioinform. 2025 Jun 9;7(2):lqaf073. doi: 10.1093/nargab/lqaf073. eCollection 2025 Jun.

Abstract

Single-cell RNA sequencing measures individual cell transcriptomes in a sample. In the past decade, this technology has motivated the development of hundreds of clustering methods. These methods attempt to group cells into populations by leveraging the similarity of their transcriptomes. Because each method relies on specific hypotheses, their predictions can vary drastically. To address this issue, ensemble algorithms detect cell populations by integrating multiple clustering methods, and minimizing the differences of their predictions. While this approach is sensible, it has yet to address some conceptual challenges in single-cell data science; namely, ensemble algorithms have yet to generate clustering results with uncertainty values and multiple resolutions. In this work, we present an original approach to ensemble clustering that addresses these challenges, by describing the differences between clustering results, rather than minimizing them. We present the scEVE algorithm, and we evaluate it on 15 experimental datasets, and up to 1200 synthetic datasets. Our results reveal that scEVE outperforms the state of the art, and addresses both conceptual challenges. We also highlight how biological downstream analyses will benefit from addressing these challenges. We expect that this work will provide an alternative direction for developing single-cell ensemble clustering algorithms.

摘要

单细胞RNA测序可测量样本中单个细胞的转录组。在过去十年中,这项技术推动了数百种聚类方法的发展。这些方法试图通过利用细胞转录组的相似性将细胞分组为不同的群体。由于每种方法都依赖于特定的假设,它们的预测可能会有很大差异。为了解决这个问题,集成算法通过整合多种聚类方法并最小化它们预测结果的差异来检测细胞群体。虽然这种方法是合理的,但它尚未解决单细胞数据科学中的一些概念性挑战;也就是说,集成算法尚未生成具有不确定性值和多分辨率的聚类结果。在这项工作中,我们提出了一种用于集成聚类的创新方法,通过描述聚类结果之间的差异而不是最小化这些差异来解决这些挑战。我们展示了scEVE算法,并在15个实验数据集和多达1200个合成数据集上对其进行了评估。我们的结果表明,scEVE优于现有技术,并解决了这两个概念性挑战。我们还强调了生物下游分析将如何从应对这些挑战中受益。我们预计这项工作将为开发单细胞集成聚类算法提供一个替代方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8284/12147100/7a5f4b7c4597/lqaf073fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验