Nilsson Sara, Nielsen Monia R, Fritzsche Joachim, Langhammer Christoph, Kadkhodazadeh Shima
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
DTU Nanolab, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark.
Nanoscale. 2022 Jun 16;14(23):8332-8341. doi: 10.1039/d2nr01054b.
Chemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 °C. Using environmental scanning transmission electron microscopy, we monitor the evolution of oxide formation with sub-nanometre spatial resolution, and show how the prevalence of oxide island nucleation, Cabrera-Mott, Valensi-Carter and Kirkendall mechanisms under different conditions determines the morphology of the particles. Moreover, using electron energy-loss spectroscopy, we probe the localised surface plasmons of individual particles during oxidation, and with the aid of finite-difference time-domain electrodynamic simulations investigate the signature of each mechanism in their plasmonic response. Our results shed light on the rich and intricate processes involved in the oxidation of nanoparticles, and provide in-depth insight into how these processes govern their morphology and optical response, beneficial for applications in catalysis, sensing, nanomedicine and plasmonics.
涉及纳米颗粒的化学反应通常遵循复杂的过程。在这方面,在反应条件下对单个纳米颗粒进行实时探测对于揭示驱动反应路径的机制至关重要。在此,我们捕捉了单个铜纳米颗粒的氧化过程,以揭示在50-200°C温度下不同机制的顺序竞争性激活。使用环境扫描透射电子显微镜,我们以亚纳米空间分辨率监测氧化物形成的演变,并展示了在不同条件下氧化物岛成核、卡布雷拉-莫特、瓦伦西-卡特和柯肯达尔机制的普遍性如何决定颗粒的形态。此外,使用电子能量损失谱,我们在氧化过程中探测单个颗粒的局域表面等离子体激元,并借助时域有限差分电动力学模拟研究每种机制在其等离子体响应中的特征。我们的结果揭示了纳米颗粒氧化过程中丰富而复杂的过程,并深入了解了这些过程如何控制它们的形态和光学响应,这对于催化、传感、纳米医学和等离子体学中的应用是有益的。