Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
Nanoscale. 2019 Nov 21;11(43):20725-20733. doi: 10.1039/c9nr07681f. Epub 2019 Oct 25.
Copper nanostructures are ubiquitous in microelectronics and heterogeneous catalysis and their oxidation is a topic of high current interest and broad relevance. It relates to important questions, such as catalyst active phase, activity and selectivity, as well as fatal failure of microelectronic devices. Despite the obvious importance of understanding the mechanism of Cu nanostructure oxidation, numerous open questions remain, including under what conditions homogeneous oxide layer growth occurs and when the nanoscale Kirkendall void forms. Experimentally, this is not trivial to investigate because when a large number of nanoparticles are simultaneously probed, ensemble averaging makes rigorous conclusions difficult. On the other hand, when (in situ) electron-microscopy approaches with single nanoparticle resolution are applied, concerns about beam effects that may both reduce the oxide or prevent oxidation via the deposition and cross-linking of carbonaceous species cannot be neglected. In response we present how single particle plasmonic nanospectroscopy can be used for the in situ real time characterization of multiple individual Cu nanoparticles during oxidation. Our analysis of their optical response combined with post mortem electron microscopy imaging and detailed Finite-Difference Time-Domain electrodynamics simulations enables in situ identification of the oxidation mechanism both in the initial oxide shell growth phase and during Kirkendall void formation, as well as the transition between them. In a wider perspective, this work presents the foundation for the application of single particle plasmonic nanospectroscopy in investigations of the impact of parameters like particle size, shape and grain structure with respect to defects and grain boundaries on the oxidation of metal nanoparticles.
铜纳米结构在微电子学和多相催化中无处不在,其氧化是当前研究热点和广泛关注的课题。这与一些重要问题有关,如催化剂的活性相、活性和选择性,以及微电子器件的致命失效。尽管理解铜纳米结构氧化机制的重要性显而易见,但仍存在许多悬而未决的问题,包括在什么条件下会发生均匀氧化层生长,以及何时会形成纳米级 Kirkendall 空洞。从实验角度来看,这并不容易研究,因为当大量纳米颗粒同时被探测时,集合平均使得严格的结论变得困难。另一方面,当应用具有单纳米颗粒分辨率的(原位)电子显微镜方法时,不能忽视可能通过沉积和交联含碳物种来减少氧化物或阻止氧化的束流效应的担忧。有鉴于此,我们介绍了如何在氧化过程中使用单粒子等离子体纳米光谱法原位实时表征多个单个铜纳米颗粒。我们对其光学响应的分析,结合死后电子显微镜成像和详细的有限差分时域电动力学模拟,能够原位识别氧化机制,包括初始氧化壳生长阶段和 Kirkendall 空洞形成阶段,以及它们之间的转变。从更广泛的角度来看,这项工作为单粒子等离子体纳米光谱法在研究颗粒尺寸、形状和晶粒结构等参数对金属纳米颗粒氧化的影响,以及缺陷和晶界的影响奠定了基础。