Nilsson Sara, El Berch John N, Albinsson David, Fritzsche Joachim, Mpourmpakis Giannis, Langhammer Christoph
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
ACS Nano. 2023 Oct 24;17(20):20284-20298. doi: 10.1021/acsnano.3c06282. Epub 2023 Oct 5.
The oxidation of transition metal surfaces is a process that takes place readily at ambient conditions and that, depending on the specific catalytic reaction at hand, can either boost or hamper activity and selectivity. Cu catalysts are no exception in this respect since they exhibit different oxidation states for which contradicting activities have been reported, as, for example, in the catalytic oxidation of CO. Here, we investigate the impact of low-coordination sites on nanofabricated Cu nanoparticles with engineered grain boundaries on the oxidation of the Cu surface under CO oxidation reaction conditions. Combining multiplexed single particle plasmonic nanoimaging, transmission electron microscopy imaging, and density functional theory calculations reveals a distinct dependence of particle oxidation rate on grain boundary density. Additionally, we found that the oxide predominantly nucleates at grain boundary-surface intersections, which leads to nonuniform oxide growth that suppresses Kirkendall-void formation. The oxide nucleation rate on Cu metal catalysts was revealed to be an interplay of surface coordination and CO oxidation behavior, with low coordination favoring Cu oxidation and high coordination favoring CO oxidation. These findings explain the observed single particle-specific onset of Cu oxidation as being the consequence of the individual particle grain structure and provide an explanation for widely distributed activity states of particles in catalyst bed ensembles.
过渡金属表面的氧化是一个在环境条件下容易发生的过程,并且根据手头特定的催化反应,它既可以促进也可以阻碍活性和选择性。铜催化剂在这方面也不例外,因为它们表现出不同的氧化态,例如在CO的催化氧化中,已经报道了相互矛盾的活性。在这里,我们研究了具有工程化晶界的纳米制造铜纳米颗粒上低配位位点对CO氧化反应条件下铜表面氧化的影响。结合多重单粒子等离子体纳米成像、透射电子显微镜成像和密度泛函理论计算,揭示了颗粒氧化速率对晶界密度的明显依赖性。此外,我们发现氧化物主要在晶界-表面交叉处成核,这导致了抑制柯肯达尔空洞形成的不均匀氧化物生长。铜金属催化剂上的氧化物成核速率被揭示为表面配位和CO氧化行为的相互作用,低配位有利于铜氧化,高配位有利于CO氧化。这些发现解释了观察到的铜氧化的单粒子特异性起始是单个颗粒晶粒结构的结果,并为催化剂床集合中颗粒广泛分布的活性状态提供了解释。