McCubbin Alan J
Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia.
Eur J Sport Sci. 2023 Jun;23(6):992-1000. doi: 10.1080/17461391.2022.2083526. Epub 2022 Jun 13.
Evidence suggests the focus for sodium replacement during exercise should be maintenance of plasma sodium concentration ([Na]) for any given total body water (TBW) volume. The sodium intake to achieve stable [Na] given known fluid and electrolyte intakes and losses can be mathematically estimated. Therefore the aim of this investigation was to model sodium requirements of athletes during exercise, observing the influence of sweat rate, exercise duration, body mass, baseline [Na] and sweat potassium [K], and relevance to competition (soccer, elite marathon, and 160 km ultramarathon running). Models were constructed across a range of sweat sodium concentrations ([Na]) (20-80 mmol·L), sweat rates (0.5-2.5 L·h) and fluid replacement (10-90% of losses). In the competition-specific scenarios, fluid replacement was calculated to achieve 2% TBW losses. Sodium requirements were driven by fluid replacement (% of losses) and [Na], with minimal or no influence of other variables. Replacing sodium was unnecessary in all realistic scenarios modelled for a soccer match and elite marathon. In contrast, the 160 km ultramarathon required ≥47% sodium replacement when [Na] was ≥40 mmol·L and >80% of fluid losses were replaced. In conclusion, sodium requirements to maintain stable [Na] during exercise depend on both the proportion of fluid losses replaced, and [Na]. Only when prolonged exercise is coupled with aggressive fluid replacement (>80%) and whole body [Na] ≥40 mmol·L does sweat composition testing and significant, targeted sodium replacement appear necessary.Modelling sodium intake requirements with sodium and fluid intake expressed as a proportion of losses, allows robust models to be constructed that are not influenced by sweat rate, exercise duration, body mass, and only to a minor extent by baseline plasma sodium and sweat potassium.When applied to specific sporting scenarios, targeted sodium replacement, and therefore sweat composition testing, appears unnecessary in all realistic scenarios modelled for a soccer match or elite marathon race. Athletes can therefore choose sodium intake according to taste preferences rather than physiological need.During a 160 km ultramarathon, targeted sodium replacement may be necessary because fluid replacement needs are greater as a proportion of losses. However the required quantity remains <50% of losses unless sweat rate is ≥1.5 L·hr, sweat sodium is ≥40 mmol·L, and fluid replacement is ≥90% of losses.The modelling technique described could be utilised by researchers to personalise sodium replacement in intervention studies for each participant, or by practitioners to either estimate the likely sodium needs of athletes during exercise, or to decide when sweat composition testing is or is not likely to be useful.
有证据表明,运动期间钠补充的重点应是在任何给定的总体液量(TBW)下维持血浆钠浓度([Na])。在已知液体和电解质摄入量及损失量的情况下,实现稳定[Na]所需的钠摄入量可以通过数学方法估算。因此,本研究的目的是建立运动员运动期间钠需求的模型,观察出汗率、运动持续时间、体重、基线[Na]和汗液钾含量[K]的影响,以及与比赛项目(足球、精英马拉松和160公里超级马拉松)的相关性。模型涵盖了一系列汗液钠浓度([Na])(20 - 80 mmol·L)、出汗率(0.5 - 2.5 L·h)和液体补充量(损失量的10 - 90%)。在特定比赛场景中,计算液体补充量以实现2%的TBW损失。钠需求受液体补充量(损失量的百分比)和[Na]驱动,其他变量影响极小或无影响。在为足球比赛和精英马拉松建模的所有实际场景中,补充钠并无必要。相比之下,当[Na]≥40 mmol·L且液体补充量超过损失量的80%时,160公里超级马拉松需要补充≥47%的钠。总之,运动期间维持稳定[Na]所需的钠量取决于补充的液体损失比例和[Na]。只有当长时间运动与大量液体补充(>80%)以及全身[Na]≥40 mmol·L同时出现时,才似乎有必要进行汗液成分检测并进行有针对性的大量钠补充。用钠和液体摄入量占损失量的比例来建立钠摄入需求模型,可以构建不受出汗率、运动持续时间、体重影响,且仅在较小程度上受基线血浆钠和汗液钾影响的稳健模型。当应用于特定体育场景时,在为足球比赛或精英马拉松建模的所有实际场景中,似乎都无需进行有针对性的钠补充以及因此进行的汗液成分检测。因此,运动员可以根据口味偏好而非生理需求来选择钠摄入量。在160公里超级马拉松中,可能需要进行有针对性的钠补充,因为按损失量的比例计算,液体补充需求更大。然而,除非出汗率≥1.5 L·hr,汗液钠含量≥40 mmol·L,且液体补充量≥损失量的90%,所需补充量仍低于损失量的50%。所描述的建模技术可供研究人员在干预研究中为每个参与者个性化钠补充方案,或供从业者估算运动员运动期间可能的钠需求,或决定何时汗液成分检测可能有用或无用。