Suppr超能文献

Argolaphos 的生物合成阐明了含氨基甲基膦酸酯和 N-羟精氨酸的天然产物的不寻常生化起源。

Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N-Hydroxyarginine Containing Natural Products.

机构信息

Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.

Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

J Am Chem Soc. 2022 Jun 8;144(22):9634-9644. doi: 10.1021/jacs.2c00627. Epub 2022 May 26.

Abstract

Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and N-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the N position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and N-hydroxyarginine natural products that await discovery.

摘要

膦酸天然产物由于能够抑制重要的细胞途径,在医学和生物技术中有成功应用的历史。这激发了人们通过优先考虑那些其基因组编码未表征的生物合成基因簇 (BGCs) 的微生物菌株来发现膦酸天然产物的努力。因此,基因组挖掘的成功取决于确定抑制性化学部分生物合成的基本原理,以促进 BGCs 和其产物的生物活性的准确预测。在这里,我们报告了 argolaphos 膦肽的完整生物合成途径。我们揭示了氨基甲基膦酸 (AMPn) 和 N-羟基精氨酸的生化起源,这两种非典型氨基酸是 argolaphos 抗菌功能的组成部分。关键是专门用于将羟甲基膦酸转化为 AMPn 的脱氢酶和转氨酶酶。这两种酶的相互作用活动提供了一种解决方案,可以克服不利的能量学,增强辅因子的再生,并在这些转化过程中减轻中间毒性。通过两种 GCN5 相关的 N-乙酰转移酶以 tRNA 依赖的方式提供 l-精氨酸和 l-缬氨酸的连续连接。AglA 被揭示为一种不寻常的血红素依赖性单加氧酶,它将 AMPn-Arg 的 N 位羟化。作为 YqcI/YcgG 蛋白家族中第一个生化表征的成员,AglA 阐明了这个难以捉摸的家族的潜在功能,它在生化上与成熟的 P450 单加氧酶明显不同。AMPn 和 YqcI/YcgG 基因在放线菌基因组中的广泛分布表明它们参与了不同的代谢途径和细胞功能。我们的发现阐明了天然产物生物合成的新范例,并实现了 AmPn 和 N-羟基精氨酸天然产物的大量发现。

相似文献

7
Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways.基因工程中天然产物生物合成途径的重组。
Trends Biotechnol. 2020 Jul;38(7):715-728. doi: 10.1016/j.tibtech.2019.12.018. Epub 2020 Jan 20.

引用本文的文献

2
Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds.氮-氮键酶促形成的最新进展与挑战
ACS Catal. 2024 Dec 17;15(1):310-342. doi: 10.1021/acscatal.4c05268. eCollection 2025 Jan 3.

本文引用的文献

2
Glufosinate-ammonium: a review of the current state of knowledge.草铵膦:当前知识状况综述。
Pest Manag Sci. 2020 Dec;76(12):3911-3925. doi: 10.1002/ps.5965. Epub 2020 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验