Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.
Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.
J Am Chem Soc. 2022 Jun 8;144(22):9634-9644. doi: 10.1021/jacs.2c00627. Epub 2022 May 26.
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and N-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the N position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and N-hydroxyarginine natural products that await discovery.
膦酸天然产物由于能够抑制重要的细胞途径,在医学和生物技术中有成功应用的历史。这激发了人们通过优先考虑那些其基因组编码未表征的生物合成基因簇 (BGCs) 的微生物菌株来发现膦酸天然产物的努力。因此,基因组挖掘的成功取决于确定抑制性化学部分生物合成的基本原理,以促进 BGCs 和其产物的生物活性的准确预测。在这里,我们报告了 argolaphos 膦肽的完整生物合成途径。我们揭示了氨基甲基膦酸 (AMPn) 和 N-羟基精氨酸的生化起源,这两种非典型氨基酸是 argolaphos 抗菌功能的组成部分。关键是专门用于将羟甲基膦酸转化为 AMPn 的脱氢酶和转氨酶酶。这两种酶的相互作用活动提供了一种解决方案,可以克服不利的能量学,增强辅因子的再生,并在这些转化过程中减轻中间毒性。通过两种 GCN5 相关的 N-乙酰转移酶以 tRNA 依赖的方式提供 l-精氨酸和 l-缬氨酸的连续连接。AglA 被揭示为一种不寻常的血红素依赖性单加氧酶,它将 AMPn-Arg 的 N 位羟化。作为 YqcI/YcgG 蛋白家族中第一个生化表征的成员,AglA 阐明了这个难以捉摸的家族的潜在功能,它在生化上与成熟的 P450 单加氧酶明显不同。AMPn 和 YqcI/YcgG 基因在放线菌基因组中的广泛分布表明它们参与了不同的代谢途径和细胞功能。我们的发现阐明了天然产物生物合成的新范例,并实现了 AmPn 和 N-羟基精氨酸天然产物的大量发现。