State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan 250033, People's Republic of China.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7574-E7582. doi: 10.1073/pnas.1619034114. Epub 2017 Aug 21.
l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in A1501 and PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.
l-丝氨酸生物合成是大多数生命领域中至关重要的代谢过程,它由 d-3-磷酸甘油酸(d-3-PG)脱氢作用启动,这是一个热力学不利的反应,由 d-3-PG 脱氢酶(SerA)催化。d-2-羟基戊二酸(d-2-HG)传统上被视为与癌症和神经代谢紊乱相关的异常代谢物。在这里,我们揭示了细菌中 d-2-HG 的合成代谢和分解代谢参与了 A1501 和 PAO1 中的 l-丝氨酸生物合成。SerA 催化 2-酮戊二酸(2-KG)的立体特异性还原为 d-2-HG,负责体内 d-2-HG 的主要产生。SerA 结合了 d-2-HG 产生的有利能量反应,以克服 d-3-PG 脱氢的热力学障碍。我们鉴定了一种细菌 d-2-HG 脱氢酶(D2HGDH),它是一种黄素腺嘌呤二核苷酸(FAD)依赖性酶,可将 d-2-HG 转化回 2-KG。电子转移黄素蛋白(ETF)和 ETF-泛醌氧化还原酶(ETFQO)也通过从 D2HGDH 转移电子的能力在 d-2-HG 代谢中至关重要。此外,尽管 D2HGDH 缺失的突变体显示出生长减少,但通过添加 l-丝氨酸可以挽救缺陷,这表明 D2HGDH 在功能上与 l-丝氨酸合成有关。大量的通量通过 SerA 产生的 d-2-HG 和 D2HGDH、ETF 和 ETFQO 去除的 d-2-HG 流动,维持 d-2-HG 稳态。总的来说,我们的结果揭示了 d-2-HG 介导的 SerA 和 D2HGDH 之间的偶联驱动了细菌的 l-丝氨酸合成。