Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Anal Chem. 2022 Jun 7;94(22):7738-7742. doi: 10.1021/acs.analchem.2c01384. Epub 2022 May 26.
A signal amplification system for electrochemical sensing was established by bio-nanohybrid cells (BNC) based on bacterial self-assembly and biomineralization. The BNC was constructed by partially encapsulating a MR-1 cell with the self-biomineralized iron sulfide nanoparticles. The iron sulfide nanoparticle encapsulated BNCs showed high transmembrane electron transfer efficiency and was explored as a superior redox cycling module. Impressively, by integrating this BNC redox cycling module into the electrochemical sensing system, the output signal was amplified over 260 times compared to that without the BNC module. Uniquely, with this BNC redox cycling system, ultrasensitive detection of riboflavin with an extremely low LOD of 0.2 nM was achieved. This work demonstrated the power of BNC in the area of biosensing and provided a new possibility for the design of a whole cell redox cycling based signal amplification system.
基于细菌自组装和生物矿化作用,构建了一种电化学生物传感信号放大系统的生物纳米杂化细胞(BNC)。该 BN C 通过部分包裹一个具有自生物矿化的硫化铁纳米粒子的 MR-1 细胞来构建。这种封装了硫化铁纳米粒子的 BN C 表现出了高跨膜电子转移效率,被探索作为一种优越的氧化还原循环模块。令人印象深刻的是,通过将这个 BN C 氧化还原循环模块整合到电化学生物传感系统中,与没有 BN C 模块的系统相比,输出信号被放大了 260 多倍。独特的是,利用这个 BN C 氧化还原循环系统,实现了对核黄素的超灵敏检测,其检测限低至 0.2 nM。这项工作展示了 BN C 在生物传感领域的强大功能,并为基于全细胞氧化还原循环的信号放大系统的设计提供了新的可能性。