Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
J Membr Biol. 2022 Dec;255(6):677-690. doi: 10.1007/s00232-022-00241-1. Epub 2022 May 26.
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
光学镊子可以以皮牛顿和纳米精度精确测量力和距离,因此在阐明各种生物过程的机械细节方面发挥了重要作用。例如,包括对马达蛋白活性的表征、研究蛋白质-DNA 相互作用以及表征蛋白质折叠轨迹。然而,利用光学镊子 (OT) 研究膜的应用要少得多。在这里,我们回顾了利用光学镊子进行的膜生物物理学研究,重点介绍了已经开发的各种测定法及其优缺点。首先,我们讨论了使用膜包被珠的测定法,并概述了基于对这些珠的操纵的蛋白质-膜相互作用研究。我们进一步概述了大量利用一种非常强大的实验工具(光学镊子、微量吸管抽吸和荧光显微镜的组合)的研究,该工具可以详细研究膜曲率的产生和敏感性。最后,我们描述了专注于膜融合和裂变的研究。然后,我们总结了该领域的整体进展,并概述了未来的方向。