Suppr超能文献

从平板读数器中分析和荟萃分析微生物生长和基因表达的时间序列数据。

Analysing and meta-analysing time-series data of microbial growth and gene expression from plate readers.

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

School of Engineering, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS Comput Biol. 2022 May 26;18(5):e1010138. doi: 10.1371/journal.pcbi.1010138. eCollection 2022 May.

Abstract

Responding to change is a fundamental property of life, making time-series data invaluable in biology. For microbes, plate readers are a popular, convenient means to measure growth and also gene expression using fluorescent reporters. Nevertheless, the difficulties of analysing the resulting data can be a bottleneck, particularly when combining measurements from different wells and plates. Here we present omniplate, a Python module that corrects and normalises plate-reader data, estimates growth rates and fluorescence per cell as functions of time, calculates errors, exports in different formats, and enables meta-analysis of multiple plates. The software corrects for autofluorescence, the optical density's non-linear dependence on the number of cells, and the effects of the media. We use omniplate to measure the Monod relationship for the growth of budding yeast in raffinose, showing that raffinose is a convenient carbon source for controlling growth rates. Using fluorescent tagging, we study yeast's glucose transport. Our results are consistent with the regulation of the hexose transporter (HXT) genes being approximately bipartite: the medium and high affinity transporters are predominately regulated by both the high affinity glucose sensor Snf3 and the kinase complex SNF1 via the repressors Mth1, Mig1, and Mig2; the low affinity transporters are predominately regulated by the low affinity sensor Rgt2 via the co-repressor Std1. We thus demonstrate that omniplate is a powerful tool for exploiting the advantages offered by time-series data in revealing biological regulation.

摘要

响应变化是生命的基本属性,因此时间序列数据在生物学中非常有价值。对于微生物来说,平板读数器是一种流行且方便的方法,可以使用荧光报告基因来测量生长和基因表达。然而,分析由此产生的数据的困难可能是一个瓶颈,特别是在结合来自不同孔和板的测量值时。这里我们介绍 omniplate,这是一个 Python 模块,可校正和标准化平板读数器数据,估计细胞生长率和荧光作为时间的函数,计算误差,以不同格式导出,并支持对多个板进行元分析。该软件可校正自发荧光、细胞数量与光密度的非线性关系以及培养基的影响。我们使用 omniplate 来测量出芽酵母在棉子糖中生长的 Monod 关系,表明棉子糖是一种方便的碳源,可以控制生长速率。使用荧光标记,我们研究了酵母的葡萄糖转运。我们的结果与六碳糖转运蛋白(HXT)基因的调控基本一致:中亲和和高亲和转运蛋白主要受高亲和葡萄糖传感器 Snf3 和 SNF1 激酶复合物通过抑制因子 Mth1、Mig1 和 Mig2 调节;低亲和转运蛋白主要受低亲和传感器 Rgt2 通过共抑制因子 Std1 调节。因此,我们证明 omniplate 是一种强大的工具,可以利用时间序列数据揭示生物调控的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f4e/9176753/7f26cda58e4b/pcbi.1010138.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验