Ko C H, Liang H, Gaber R F
Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208.
Mol Cell Biol. 1993 Jan;13(1):638-48. doi: 10.1128/mcb.13.1.638-648.1993.
In Saccharomyces cerevisiae, TRK1 and TRK2 are required for high- and low-affinity K+ transport. Among suppressors of the K+ transport defect in trk1 delta trk2 delta cells, we have identified members of the sugar transporter gene superfamily. One suppressor encodes the previously identified glucose transporter HXT1, and another encodes a new member of this family, HXT3. The inferred amino acid sequence of HXT3 is 87% identical to that of HXT1, 64% identical to that of HXT2, and 32% identical to that of SNF3. Like HXT1 and HXT2, overexpression of HXT3 in snf3 delta cells confers growth on low-glucose or raffinose media. The function of another new member of the HXT superfamily, HXT4 (previously identified by its ability to suppress the snf3 delta phenotype; L. Bisson, personal communication), was revealed in experiments that deleted all possible combinations of the five members of the glucose transporter gene family. Neither SNF3, HXT1, HXT2, HXT3, nor HXT4 is essential for viability. snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells are unable to grow on media containing high concentrations of glucose (5%) but can grow on low-glucose (0.5%) media, revealing the presence of a sixth transporter that is itself glucose repressible. This transporter may be negatively regulated by SNF3 since expression of SNF3 abolishes growth of hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells on low-glucose medium. HXT1, HXT2, HXT3, and HXT4 can function independently: expression of any one of these genes is sufficient to confer growth on medium containing at least 1% glucose. A synergistic relationship between SNF3 and each of the HXT genes is suggested by the observation that SNF2 hxt1 delta hxt2 delta hxt3 delta hxt4 delta cells and snf3 delta HXT1 HXT2 HXT3 HXT4 cells are unable to grow on raffinose (low fructose) yet SNF3 in combination with any single HXT gene is sufficient for growth on raffinose. HXT1 and HXT3 are differentially regulated. HXT1::lacZ is maximally expressed during exponential growth whereas HXT3::lacZ is maximally expressed after entry into stationary phase.
在酿酒酵母中,TRK1和TRK2是高亲和力和低亲和力钾离子转运所必需的。在trk1δtrk2δ细胞中钾离子转运缺陷的抑制子中,我们鉴定出了糖转运蛋白基因超家族的成员。一个抑制子编码先前鉴定的葡萄糖转运蛋白HXT1,另一个编码该家族的一个新成员HXT3。HXT3推导的氨基酸序列与HXT1的序列有87%的同一性,与HXT2的序列有64%的同一性,与SNF3的序列有32%的同一性。与HXT1和HXT2一样,在snf3δ细胞中过表达HXT3可使细胞在低葡萄糖或棉子糖培养基上生长。HXT超家族另一个新成员HXT4(先前通过其抑制snf3δ表型的能力鉴定;L.比松,个人交流)的功能,是在删除葡萄糖转运蛋白基因家族五个成员所有可能组合的实验中揭示的。SNF3、HXT1、HXT2、HXT3和HXT4对细胞活力均非必需。snf3δhxt1δhxt2δhxt3δhxt4δ细胞在含有高浓度葡萄糖(5%)的培养基上无法生长,但能在低葡萄糖(0.5%)培养基上生长,这表明存在第六种本身受葡萄糖阻遏的转运蛋白。这种转运蛋白可能受SNF3负调控,因为SNF3的表达会消除hxt1δhxt2δhxt3δhxt4δ细胞在低葡萄糖培养基上的生长。HXT1、HXT2、HXT3和HXT4可以独立发挥作用:这些基因中的任何一个的表达都足以使细胞在含有至少1%葡萄糖的培养基上生长。观察到SNF2 hxt1δhxt2δhxt3δhxt4δ细胞和snf3δHXT1 HXT2 HXT3 HXT4细胞在棉子糖(低果糖)上无法生长,而SNF3与任何单个HXT基因组合足以使细胞在棉子糖上生长,这表明SNF3与每个HXT基因之间存在协同关系。HXT1和HXT3受到不同的调控。HXT1::lacZ在指数生长期间表达最高,而HXT3::lacZ在进入稳定期后表达最高。