Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
Nat Commun. 2022 May 26;13(1):2940. doi: 10.1038/s41467-022-30619-7.
Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.
骨骼肌可以通过被称为卫星细胞的常驻干细胞进行修复和再生。肌营养不良症是一种进行性肌肉消耗疾病,其特征是慢性肌肉损伤,由卫星细胞驱动的再生不断修复。在这里,我们生成了一种遗传策略来介导营养不良小鼠模型中的卫星细胞消融,以研究卫星细胞如何影响疾病进程。出乎意料的是,我们观察到卫星细胞的耗竭减少了营养不良疾病的特征,具有改善的组织病理学、增强的肌膜稳定性和增强的肌肉性能。从机制上讲,我们证明卫星细胞启动肌源性转录因子 MyoD 的表达,然后诱导肌纤维中胎儿基因的重新表达,从而使肌膜不稳定。事实上,野生型成年骨骼肌中 MyoD 的重新表达会降低膜稳定性并促进组织病理学,而肌肉营养不良小鼠模型中 MyoD 的抑制则改善了膜稳定性。总之,这些观察结果表明,卫星细胞的激活和胎儿基因程序在慢性营养不良的骨骼肌中是适应不良的。