Suppr超能文献

扩张型心肌病基因诊断列线图的建立与验证。

Development and verification of the nomogram for dilated cardiomyopathy gene diagnosis.

机构信息

Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.

出版信息

Sci Rep. 2022 May 26;12(1):8908. doi: 10.1038/s41598-022-13135-y.

Abstract

Dilated cardiomyopathy (DCM) is a primary myocardial disease of unclear mechanism and poor prevention. The purpose of this study is to explore the potential molecular mechanisms and targets of DCM via bioinformatics methods and try to diagnose and prevent disease progression early. We screened 333 genes differentially expressed between DCM and normal heart samples from GSE141910, and further used Weighted correlation network analysis to identify 197 DCM-related genes. By identifying the key modules in the protein-protein interaction network and Least Absolute Shrinkage and Selection Operator regression analysis, seven hub DCM genes (CX3CR1, AGTR2, ADORA3, CXCL10, CXCL11, CXCL9, SAA1) were identified. Calculating the area under the receiver's operating curve revealed that these 7 genes have an excellent ability to diagnose and predict DCM. Based on this, we built a logistic regression model and drew a nomogram. The calibration curve showed that the actual incidence is basically the same as the predicted incidence; while the C-index values of the nomogram and the four external validation data sets are 0.95, 0.90, 0.96, and 0.737, respectively, showing excellent diagnostic and predictive ability; while the decision curve indicated the wide applicability of the nomogram is helpful for clinicians to make accurate decisions.

摘要

扩张型心肌病(DCM)是一种发病机制尚不清楚且预防效果较差的原发性心肌疾病。本研究旨在通过生物信息学方法探讨 DCM 的潜在分子机制和靶点,尝试早期诊断和预防疾病进展。我们从 GSE141910 中筛选出 333 个 DCM 与正常心脏样本之间差异表达的基因,并进一步使用加权相关网络分析识别出 197 个与 DCM 相关的基因。通过鉴定蛋白质-蛋白质相互作用网络中的关键模块和最小绝对收缩和选择算子回归分析,确定了七个 DCM 关键基因(CX3CR1、AGTR2、ADORA3、CXCL10、CXCL11、CXCL9、SAA1)。计算接收器工作特征曲线下的面积表明,这 7 个基因具有出色的 DCM 诊断和预测能力。在此基础上,我们构建了一个逻辑回归模型并绘制了一个列线图。校准曲线表明实际发生率与预测发生率基本一致;而列线图和四个外部验证数据集的 C 指数值分别为 0.95、0.90、0.96 和 0.737,显示出出色的诊断和预测能力;而决策曲线表明该列线图具有广泛的适用性,有助于临床医生做出准确决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验