Debnath Ramit, Bardhan Ronita, Misra Ashwin, Hong Tianzhen, Rozite Vida, Ramage Michael H
Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge, Cambridge, CB2 1AG, UK.
Centre for Natural Material Innovation, Department of Architecture, University of Cambridge, Cambridge, CB2 1PX, UK.
Energy Policy. 2022 May;164:None. doi: 10.1016/j.enpol.2022.112886.
This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our methodology includes climate correction, dimensionality reduction and machine learning-based clustering using Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak demand increased by 150-200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom-units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of demand shocks using similar public datasets, which informed policy implications for India's digitalisation. We further emphasised improving the data quality and reliability for effective data-centric policymaking.
本研究利用公共智能电表数据集,评估2020年全国范围全面封锁对印度13个城市居民用电需求的影响以及数字化的作用。我们采用数据驱动的方法,探索居家办公规范对五种住宅类型的能源影响。我们的方法包括气候校正、降维和使用日负荷曲线的高斯混合模型进行基于机器学习的聚类。结果表明,在封锁期间,与2018年和2019年水平相比,一居室单元(RM1)、一卧室单元(BR1)和两卧室单元(BR2)(典型的中低收入家庭住宅)的每日最高峰值需求增长了150%-200%。而中高收入和高收入住宅单元(即三居室(3BR)及以上卧室单元(M3BR))在2020年夜间需求与2018年和2019年水平相比增长了近44%。我们的结果还表明,RM1、BR1和BR2住宅类型在封锁期间出现了新的峰值需求。我们发现,缺乏配套的社会经济和气候数据会限制使用类似公共数据集对需求冲击进行全面分析,这为印度数字化的政策影响提供了依据。我们进一步强调要提高数据质量和可靠性,以实现有效的以数据为中心的政策制定。