Suppr超能文献

用于对抗域匹配的瓦瑟斯坦不确定性估计

Wasserstein Uncertainty Estimation for Adversarial Domain Matching.

作者信息

Wang Rui, Zhang Ruiyi, Henao Ricardo

机构信息

Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States.

Department of Computer Science, Duke University, Durham, NC, United States.

出版信息

Front Big Data. 2022 May 10;5:878716. doi: 10.3389/fdata.2022.878716. eCollection 2022.

Abstract

Domain adaptation aims at reducing the domain shift between a labeled source domain and an unlabeled target domain, so that the source model can be generalized to target domains without fine tuning. In this paper, we propose to evaluate the cross-domain transferability between source and target samples by domain prediction uncertainty, which is quantified via Wasserstein gradient flows. Further, we exploit it for reweighting the training samples to alleviate the issue of domain shift. The proposed mechanism provides a meaningful curriculum for cross-domain transfer and adaptively rules out samples that contain too much domain specific information during domain adaptation. Experiments on several benchmark datasets demonstrate that our reweighting mechanism can achieve improved results in both balanced and partial domain adaptation.

摘要

域适应旨在减少有标签的源域和无标签的目标域之间的域偏移,以便源模型无需微调就能推广到目标域。在本文中,我们建议通过域预测不确定性来评估源样本和目标样本之间的跨域可迁移性,该不确定性通过Wasserstein梯度流进行量化。此外,我们利用它对训练样本进行重新加权,以缓解域偏移问题。所提出的机制为跨域迁移提供了一个有意义的课程,并在域适应过程中自适应地排除包含过多特定域信息的样本。在几个基准数据集上的实验表明,我们的重新加权机制在平衡和部分域适应中都能取得更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad2b/9128531/21c0bad03847/fdata-05-878716-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验