Suppr超能文献

人体测量标志用于颅面畸形的诊断:自动方法的验证及与观察者内和观察者间变异性的比较。

Anthropometric Landmarking for Diagnosis of Cranial Deformities: Validation of an Automatic Approach and Comparison with Intra- and Interobserver Variability.

机构信息

2Ai - School of Technology, IPCA, Barcelos, Portugal.

Algoritmi Center, School of Engineering, University of Minho, Campus de Azurém, 4804-533, Guimarães, Portugal.

出版信息

Ann Biomed Eng. 2022 Sep;50(9):1022-1037. doi: 10.1007/s10439-022-02981-6. Epub 2022 May 27.

Abstract

Shape analysis of infant's heads is crucial to diagnose cranial deformities and evaluate head growth. Currently available 3D imaging systems can be used to create 3D head models, promoting the clinical practice for head evaluation. However, manual analysis of 3D shapes is difficult and operator-dependent, causing inaccuracies in the analysis. This study aims to validate an automatic landmark detection method for head shape analysis. The detection results were compared with manual analysis in three levels: (1) distance error of landmarks; (2) accuracy of standard cranial measurements, namely cephalic ratio (CR), cranial vault asymmetry index (CVAI), and overall symmetry ratio (OSR); and (3) accuracy of the final diagnosis of cranial deformities. For each level, the intra- and interobserver variability was also studied by comparing manual landmark settings. High landmark detection accuracy was achieved by the method in 166 head models. A very strong agreement with manual analysis for the cranial measurements was also obtained, with intraclass correlation coefficients of 0.997, 0.961, and 0.771 for the CR, CVAI, and OSR. 91% agreement with manual analysis was achieved in the diagnosis of cranial deformities. Considering its high accuracy and reliability in different evaluation levels, the method showed to be feasible for use in clinical practice for head shape analysis.

摘要

婴儿头部的形态分析对于诊断颅面畸形和评估头围生长至关重要。目前可用的 3D 成像系统可用于创建 3D 头部模型,从而促进头部评估的临床实践。然而,3D 形态的手动分析既困难又依赖于操作者,导致分析不准确。本研究旨在验证一种用于头部形态分析的自动地标检测方法。检测结果与手动分析在三个层面上进行了比较:(1)地标之间的距离误差;(2)标准颅测量的准确性,即头围比(CR)、颅穹窿不对称指数(CVAI)和整体对称比(OSR);以及(3)颅面畸形最终诊断的准确性。对于每个级别,还通过比较手动地标设置研究了内部和观察者之间的可变性。该方法在 166 个头模中实现了高的地标检测精度。对于颅测量,也获得了与手动分析非常强的一致性,CR、CVAI 和 OSR 的组内相关系数分别为 0.997、0.961 和 0.771。在颅面畸形的诊断中,与手动分析的一致性达到 91%。考虑到其在不同评估水平上的高精度和可靠性,该方法显示出在临床实践中对头形分析的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验