Suppr超能文献

三种自动方法分类淀粉样蛋白 PET 图像的比较。

Comparison of Three Automated Approaches for Classification of Amyloid-PET Images.

机构信息

Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Nanyang Junior College, Singapore, Singapore.

出版信息

Neuroinformatics. 2022 Oct;20(4):1065-1075. doi: 10.1007/s12021-022-09587-2. Epub 2022 May 27.

Abstract

Automated amyloid-PET image classification can support clinical assessment and increase diagnostic confidence. Three automated approaches using global cut-points derived from Receiver Operating Characteristic (ROC) analysis, machine learning (ML) algorithms with regional SUVr values, and deep learning (DL) network with 3D image input were compared under various conditions: number of training data, radiotracers, and cohorts. 276 [C]PiB and 209 [F]AV45 PET images from ADNI database and our local cohort were used. Global mean and maximum SUVr cut-points were derived using ROC analysis. 68 ML models were built using regional SUVr values and one DL network was trained with classifications of two visual assessments - manufacturer's recommendations (gray-scale) and with visually guided reference region scaling (rainbow-scale). ML-based classification achieved similarly high accuracy as ROC classification, but had better convergence between training and unseen data, with a smaller number of training data. Naïve Bayes performed the best overall among the 68 ML algorithms. Classification with maximum SUVr cut-points yielded higher accuracy than with mean SUVr cut-points, particularly for cohorts showing more focal uptake. DL networks can support the classification of definite cases accurately but performed poorly for equivocal cases. Rainbow-scale standardized image intensity scaling and improved inter-rater agreement. Gray-scale detects focal accumulation better, thus classifying more amyloid-positive scans. All three approaches generally achieved higher accuracy when trained with rainbow-scale classification. ML yielded similarly high accuracy as ROC, but with better convergence between training and unseen data, and further work may lead to even more accurate ML methods.

摘要

自动化淀粉样蛋白-PET 图像分类可以支持临床评估并提高诊断信心。在各种条件下(训练数据量、示踪剂和队列数量),比较了三种使用来自接受者操作特征(ROC)分析的全局截止值、使用区域 SUVr 值的机器学习(ML)算法和具有 3D 图像输入的深度学习(DL)网络的自动方法。使用 ADNI 数据库和我们当地队列中的 276 个 [C]PiB 和 209 个 [F]AV45 PET 图像。使用 ROC 分析得出全局平均和最大 SUVr 截止值。使用区域 SUVr 值构建了 68 个 ML 模型,并用两种视觉评估的分类(灰度级)和视觉引导参考区域缩放(彩虹级)训练了一个 DL 网络。基于 ML 的分类与 ROC 分类一样具有较高的准确性,但与未见过的数据之间的收敛性更好,所需的训练数据量更少。在 68 个 ML 算法中,朴素贝叶斯的总体性能最好。使用最大 SUVr 截止值进行分类的准确性高于使用平均 SUVr 截止值,特别是对于显示更多局灶摄取的队列。DL 网络可以准确支持明确病例的分类,但对不确定病例的分类效果不佳。彩虹级标准化图像强度缩放和提高了观察者间的一致性。灰度级更好地检测局灶性积聚,从而分类更多的淀粉样蛋白阳性扫描。当使用彩虹级分类进行训练时,所有三种方法通常都能获得更高的准确性。ML 与 ROC 一样具有较高的准确性,但与未见过的数据之间的收敛性更好,进一步的工作可能会导致更准确的 ML 方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验