Suppr超能文献

¹⁸F-氟噻匹定 PET 采用机器学习进行二分类:与视觉读取和结构 MRI 的比较。

Binary classification of ¹⁸F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI.

机构信息

Laboratory for Cognitive Neurology, Experimental Neurology Section, Katholieke Universiteit Leuven, Belgium.

出版信息

Neuroimage. 2013 Jan 1;64:517-25. doi: 10.1016/j.neuroimage.2012.09.015. Epub 2012 Sep 14.

Abstract

(18)F-flutemetamol is a positron emission tomography (PET) tracer for in vivo amyloid imaging. The ability to classify amyloid scans in a binary manner as 'normal' versus 'Alzheimer-like', is of high clinical relevance. We evaluated whether a supervised machine learning technique, support vector machines (SVM), can replicate the assignments made by visual readers blind to the clinical diagnosis, which image components have highest diagnostic value according to SVM and how (18)F-flutemetamol-based classification using SVM relates to structural MRI-based classification using SVM within the same subjects. By means of SVM with a linear kernel, we analyzed (18)F-flutemetamol scans and volumetric MRI scans from 72 cases from the (18)F-flutemetamol phase 2 study (27 clinically probable Alzheimer's disease (AD), 20 amnestic mild cognitive impairment (MCI), 25 controls). In a leave-one-out approach, we trained the (18)F-flutemetamol based classifier by means of the visual reads and tested whether the classifier was able to reproduce the assignment based on visual reads and which voxels had the highest feature weights. The (18)F-flutemetamol based classifier was able to replicate the assignments obtained by visual reads with 100% accuracy. The voxels with highest feature weights were in the striatum, precuneus, cingulate and middle frontal gyrus. Second, to determine concordance between the gray matter volume- and the (18)F-flutemetamol-based classification, we trained the classifier with the clinical diagnosis as gold standard. Overall sensitivity of the (18)F-flutemetamol- and the gray matter volume-based classifiers were identical (85.2%), albeit with discordant classification in three cases. Specificity of the (18)F-flutemetamol based classifier was 92% compared to 68% for MRI. In the MCI group, the (18)F-flutemetamol based classifier distinguished more reliably between converters and non-converters than the gray matter-based classifier. The visual read-based binary classification of (18)F-flutemetamol scans can be replicated using SVM. In this sample the specificity of (18)F-flutemetamol based SVM for distinguishing AD from controls is higher than that of gray matter volume-based SVM.

摘要

(18)F-氟替美仑是一种正电子发射断层扫描(PET)示踪剂,用于体内淀粉样蛋白成像。以“正常”与“阿尔茨海默样”的二进制方式对淀粉样扫描进行分类的能力具有很高的临床相关性。我们评估了一种有监督的机器学习技术,支持向量机(SVM),是否可以复制视觉读者的分配,这些读者对临床诊断一无所知,根据 SVM,哪些图像成分具有最高的诊断价值,以及 SVM 基于(18)F-氟替美仑的分类与同一受试者的 SVM 基于结构 MRI 的分类如何相关。通过使用线性核的 SVM,我们分析了来自 72 例(18)F-氟替美仑 2 期研究的(18)F-氟替美仑扫描和容积 MRI 扫描(27 例临床可能的阿尔茨海默病(AD),20 例遗忘性轻度认知障碍(MCI),25 例对照)。在一种留一法方法中,我们通过视觉读数训练了(18)F-氟替美仑的分类器,并测试了分类器是否能够根据视觉读数复制分配以及哪些体素具有最高的特征权重。(18)F-氟替美仑分类器能够以 100%的准确率复制视觉读数的分配。具有最高特征权重的体素位于纹状体、楔前叶、扣带回和中额叶回。其次,为了确定基于灰质体积和(18)F-氟替美仑分类的一致性,我们以临床诊断为金标准训练分类器。(18)F-氟替美仑和基于灰质体积的分类器的总体敏感性相同(85.2%),尽管在三种情况下存在不一致的分类。(18)F-氟替美仑分类器的特异性为 92%,而 MRI 为 68%。在 MCI 组中,(18)F-氟替美仑分类器比基于灰质的分类器更可靠地区分转化者和非转化者。使用 SVM 可以复制基于视觉读数的(18)F-氟替美仑扫描的二进制分类。在该样本中,(18)F-氟替美仑 SVM 用于区分 AD 与对照的特异性高于基于灰质体积的 SVM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验