Willhelm Daniel, Wilson Nathan, Arroyave Raymundo, Qian Xiaoning, Cagin Tahir, Pachter Ruth, Qian Xiaofeng
Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.
Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25907-25919. doi: 10.1021/acsami.2c04403. Epub 2022 May 27.
Van der Waals (vdW) heterostructures are constructed by different two-dimensional (2D) monolayers vertically stacked and weakly coupled by van der Waals interactions. VdW heterostructures often possess rich physical and chemical properties that are unique to their constituent monolayers. As many 2D materials have been recently identified, the combinatorial configuration space of vdW-stacked heterostructures grows exceedingly large, making it difficult to explore through traditional experimental or computational approaches in a trial-and-error manner. Here, we present a computational framework that combines first-principles electronic structure calculations, 2D material database, and supervised machine learning methods to construct efficient data-driven models capable of predicting electronic and structural properties of vdW heterostructures from their constituent monolayer properties. We apply this approach to predict the band gap, band edges, interlayer distance, and interlayer binding energy of vdW heterostructures. Our data-driven model will open avenues for efficient screening and discovery of low-dimensional vdW heterostructures and moiré superlattices with desired electronic and optical properties for targeted device applications.
范德华(vdW)异质结构由不同的二维(2D)单分子层垂直堆叠而成,并通过范德华相互作用弱耦合。范德华异质结构通常具有其组成单分子层所特有的丰富物理和化学性质。由于最近发现了许多二维材料,范德华堆叠异质结构的组合构型空间变得极其庞大,使得难以通过传统的实验或计算方法以试错方式进行探索。在此,我们提出了一个计算框架,该框架结合了第一性原理电子结构计算、二维材料数据库和监督机器学习方法,以构建能够从其组成单分子层性质预测范德华异质结构的电子和结构性质的高效数据驱动模型。我们应用此方法预测范德华异质结构的带隙、带边、层间距离和层间结合能。我们的数据驱动模型将为高效筛选和发现具有所需电子和光学性质的低维范德华异质结构和莫尔超晶格开辟道路,以用于目标器件应用。