Suppr超能文献

硅(111)-7×7表面上的周期性角孔可以捕获银原子。

Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms.

作者信息

Osiecki Jacek R, Suto Shozo, Chutia Arunabhiram

机构信息

MAX IV Laboratory, Lund University, SE22100, Lund, Sweden.

Department of Physics, Tohoku University, Sendai, 980-8578, Japan.

出版信息

Nat Commun. 2022 May 27;13(1):2973. doi: 10.1038/s41467-022-29768-6.

Abstract

Advancement in nanotechnology to a large extent depends on the ability to manipulate materials at the atomistic level, including positioning single atoms on the active sites of the surfaces of interest, promoting strong chemical bonding. Here, we report a long-time confinement of a single Ag atom inside a corner hole (CH) of the technologically relevant Si(111)-7×7 surface, which has comparable size as a fullerene C molecule with a single dangling bond at the bottom center. Experiments reveal that a set of 17 Ag atoms stays entrapped in the CH for the entire duration of experiment, 4 days and 7 h. Warming up the surface to about 150 °C degrees forces the Ag atoms out of the CH within a few minutes. The processes of entrapment and diffusion are temperature dependent. Theoretical calculations based on density functional theory support the experimental results confirming the highest adsorption energy at the CH for the Ag atom, and suggest that other elements such as Li, Na, Cu, Au, F and I may display similar behavior. The capability of atomic manipulation at room temperature makes this effect particularly attractive for building single atom devices and possibly developing new engineering and nano-manufacturing methods.

摘要

纳米技术的进步在很大程度上取决于在原子水平上操纵材料的能力,包括将单个原子定位在感兴趣表面的活性位点上,促进强化学键的形成。在此,我们报告了在技术上相关的Si(111)-7×7表面的角孔(CH)内对单个银原子的长时间限制,该角孔的尺寸与底部中心带有单个悬垂键的富勒烯C分子相当。实验表明,在整个4天7小时的实验过程中,有17个银原子被困在角孔中。将表面加热到约150°C会在几分钟内迫使银原子离开角孔。捕获和扩散过程与温度有关。基于密度泛函理论的理论计算支持了实验结果,证实了银原子在角孔处具有最高吸附能,并表明其他元素如锂、钠、铜、金、氟和碘可能表现出类似行为。室温下的原子操纵能力使得这种效应对于构建单原子器件以及可能开发新的工程和纳米制造方法特别有吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada6/9142567/47e96832cdc4/41467_2022_29768_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验