IBM Almaden Research Center, San Jose, CA 95120, USA.
Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea.
Science. 2018 Oct 19;362(6412):336-339. doi: 10.1126/science.aat7047.
Taking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom. We could extract atom- and position-dependent information about the electronic ground state, the state mixing with neighboring atoms, and properties of the nuclear spin. Thus, the hyperfine spectrum becomes a powerful probe of the chemical environment of individual atoms and nanostructures.
利用核自旋进行电子结构分析、磁共振成像和量子器件,需要对周围原子尺度环境有深入的了解和精准的控制。我们通过自旋极化扫描隧道显微镜结合单原子电子自旋共振,对单个铁和钛原子在氧化镁表面的超精细相互作用进行了测量和操控。利用原子操控移动单个原子,我们发现超精细相互作用强烈依赖于原子的结合构型。我们可以提取关于原子基态、与相邻原子混合的状态以及核自旋性质的原子和位置相关信息。因此,超精细谱成为单个原子和纳米结构化学环境的有力探针。