Suppr超能文献

大规模静息态脑网络的连通性与运动学习相关:一项高密度脑电图研究。

Connectivity in Large-Scale Resting-State Brain Networks Is Related to Motor Learning: A High-Density EEG Study.

作者信息

Titone Simon, Samogin Jessica, Peigneux Philippe, Swinnen Stephan, Mantini Dante, Albouy Genevieve

机构信息

Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium.

LBI-KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium.

出版信息

Brain Sci. 2022 Apr 21;12(5):530. doi: 10.3390/brainsci12050530.

Abstract

Previous research has shown that resting-state functional connectivity (rsFC) between different brain regions (seeds) is related to motor learning and motor memory consolidation. Using high-density electroencephalography (hdEEG), we addressed this question from a brain network perspective. Specifically, we examined frequency-dependent functional connectivity in resting-state networks from twenty-nine young healthy participants before and after they were trained on a motor sequence learning task. Consolidation was assessed with an overnight retest on the motor task. Our results showed training-related decreases in gamma-band connectivity within the motor network, and between the motor and functionally distinct resting-state networks including the attentional network. Brain-behavior correlation analyses revealed that baseline beta, delta, and theta rsFC were related to subsequent motor learning and memory consolidation such that lower connectivity within the motor network and between the motor and several distinct resting-state networks was correlated with better learning and overnight consolidation. Lastly, training-related increases in beta-band connectivity between the motor and the visual networks were related to greater consolidation. Altogether, our results indicate that connectivity in large-scale resting-state brain networks is related to-and modulated by-motor learning and memory consolidation processes. These finding corroborate previous seed-based connectivity research and provide evidence that frequency-dependent functional connectivity in resting-state networks is critically linked to motor learning and memory consolidation.

摘要

先前的研究表明,不同脑区(种子点)之间的静息态功能连接(rsFC)与运动学习和运动记忆巩固有关。我们使用高密度脑电图(hdEEG),从脑网络的角度解决了这个问题。具体而言,我们在29名年轻健康参与者进行运动序列学习任务训练前后,检查了静息态网络中频率依赖的功能连接。通过对运动任务进行隔夜复测来评估巩固情况。我们的结果显示,训练导致运动网络内以及运动网络与包括注意力网络在内的功能不同的静息态网络之间的伽马波段连接性降低。脑-行为相关性分析表明,基线时的贝塔、德尔塔和西塔rsFC与随后的运动学习和记忆巩固有关,即运动网络内以及运动网络与几个不同的静息态网络之间较低的连接性与更好的学习和隔夜巩固相关。最后,运动网络与视觉网络之间训练相关的贝塔波段连接性增加与更大程度的巩固有关。总之,我们的结果表明,大规模静息态脑网络中的连接性与运动学习和记忆巩固过程相关并受其调节。这些发现证实了先前基于种子点的连接性研究,并提供了证据表明静息态网络中频率依赖的功能连接与运动学习和记忆巩固密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f286/9138969/54254edbda64/brainsci-12-00530-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验