Suppr超能文献

基于约束、基于评分和混合算法构建牛转录组中的贝叶斯基因网络。

Constraint-Based, Score-Based and Hybrid Algorithms to Construct Bayesian Gene Networks in the Bovine Transcriptome.

作者信息

Mortazavi Amin, Rashidi Amir, Ghaderi-Zefrehei Mostafa, Moradi Parham, Razmkabir Mohammad, Imumorin Ikhide G, Peters Sunday O, Smith Jacqueline

机构信息

Department of Animal Science, University of Kurdistan, Sanandaj 66177-15175, Iran.

Department of Animal Science, Yasouj University, Yasouj 74934-75918, Iran.

出版信息

Animals (Basel). 2022 May 19;12(10):1305. doi: 10.3390/ani12101305.

Abstract

Bayesian gene networks are powerful for modelling causal relationships and incorporating prior knowledge for making inferences about relationships. We used three algorithms to construct Bayesian gene networks around genes expressed in the bovine uterus and compared the efficacies of the algorithms. Dataset GSE33030 from the Gene Expression Omnibus (GEO) repository was analyzed using different algorithms for hub gene expression due to the effect of progesterone on bovine endometrial tissue following conception. Six different algorithms (grow-shrink, max-min parent children, tabu search, hill-climbing, max-min hill-climbing and restricted maximum) were compared in three higher categories, including constraint-based, score-based and hybrid algorithms. Gene network parameters were estimated using the bnlearn bundle, which is a Bayesian network structure learning toolbox implemented in R. The results obtained indicated the tabu search algorithm identified the highest degree between genes (390), Markov blankets (25.64), neighborhood sizes (8.76) and branching factors (4.38). The results showed that the highest number of shared hub genes (e.g., proline dehydrogenase 1 (), Sam-pointed domain containing Ets transcription factor (), monocyte-to-macrophage differentiation associated 2 (), semaphorin 3E (), solute carrier family 27 member 6 () and actin gamma 2 ()) was seen between the hybrid and the constraint-based algorithms, and these genes could be recommended as central to the GSE33030 data series. Functional annotation of the hub genes in uterine tissue during progesterone treatment in the pregnancy period showed that the predicted hub genes were involved in extracellular pathways, lipid and protein metabolism, protein structure and post-translational processes. The identified hub genes obtained by the score-based algorithms had a role in 2-arachidonoylglycerol and enzyme modulation. In conclusion, different algorithms and subsequent topological parameters were used to identify hub genes to better illuminate pathways acting in response to progesterone treatment in the bovine uterus, which should help with our understanding of gene regulatory networks in complex trait expression.

摘要

贝叶斯基因网络在建模因果关系以及纳入先验知识以推断关系方面具有强大功能。我们使用三种算法构建围绕牛子宫中表达基因的贝叶斯基因网络,并比较了这些算法的效率。由于受孕后孕酮对牛子宫内膜组织的影响,使用不同算法对来自基因表达综合数据库(GEO)的数据集GSE33030进行了枢纽基因表达分析。在包括基于约束、基于得分和混合算法的三个较高类别中比较了六种不同算法(增长-收缩、最大-最小父子、禁忌搜索、爬山、最大-最小爬山和受限最大算法)。使用bnlearn包估计基因网络参数,bnlearn包是一个在R中实现的贝叶斯网络结构学习工具箱。获得的结果表明,禁忌搜索算法识别出的基因之间的最高度为(390)、马尔可夫毯为(25.64)、邻域大小为(8.76)和分支因子为(4.38)。结果显示,混合算法和基于约束的算法之间共享的枢纽基因数量最多(例如,脯氨酸脱氢酶1()、含Sam结构域的Ets转录因子()、单核细胞向巨噬细胞分化相关2()、信号素3E()、溶质载体家族27成员6()和肌动蛋白γ2()),这些基因可被推荐为GSE33030数据系列的核心基因。孕期孕酮治疗期间子宫组织中枢纽基因的功能注释表明,预测的枢纽基因参与细胞外途径、脂质和蛋白质代谢、蛋白质结构和翻译后过程。基于得分算法获得的已识别枢纽基因在2-花生四烯酸甘油和酶调节中发挥作用。总之,使用不同算法和随后的拓扑参数来识别枢纽基因,以更好地阐明牛子宫中对孕酮治疗作出反应的作用途径,这应有助于我们理解复杂性状表达中的基因调控网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec6/9138007/ff1c86525fd4/animals-12-01305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验