Suppr超能文献

使用洪水剪枝爬山算法的基因调控网络重建

Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm.

作者信息

Xing Linlin, Guo Maozu, Liu Xiaoyan, Wang Chunyu, Zhang Lei

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

出版信息

Genes (Basel). 2018 Jul 6;9(7):342. doi: 10.3390/genes9070342.

Abstract

The explosion of genomic data provides new opportunities to improve the task of gene regulatory network reconstruction. Because of its inherent probability character, the Bayesian network is one of the most promising methods. However, excessive computation time and the requirements of a large number of biological samples reduce its effectiveness and application to gene regulatory network reconstruction. In this paper, Flooding-Pruning Hill-Climbing algorithm (FPHC) is proposed as a novel hybrid method based on Bayesian networks for gene regulatory networks reconstruction. On the basis of our previous work, we propose the concept of DPI Level based on data processing inequality (DPI) to better identify neighbors of each gene on the lack of enough biological samples. Then, we use the search-and-score approach to learn the final network structure in the restricted search space. We first analyze and validate the effectiveness of FPHC in theory. Then, extensive comparison experiments are carried out on known Bayesian networks and biological networks from the DREAM (Dialogue on Reverse Engineering Assessment and Methods) challenge. The results show that the FPHC algorithm, under recommended parameters, outperforms, on average, the original hill climbing and Max-Min Hill-Climbing (MMHC) methods with respect to the network structure and running time. In addition, our results show that FPHC is more suitable for gene regulatory network reconstruction with limited data.

摘要

基因组数据的爆炸式增长为改进基因调控网络重建任务提供了新机遇。由于其固有的概率特性,贝叶斯网络是最具前景的方法之一。然而,计算时间过长以及对大量生物样本的需求降低了其在基因调控网络重建中的有效性和应用。本文提出了泛洪剪枝爬山算法(FPHC),作为一种基于贝叶斯网络的新型混合方法用于基因调控网络重建。在我们之前工作的基础上,基于数据处理不等式(DPI)提出了DPI水平的概念,以便在生物样本不足时更好地识别每个基因的邻居。然后,我们使用搜索评分方法在受限的搜索空间中学习最终的网络结构。我们首先从理论上分析并验证了FPHC的有效性。然后,对来自DREAM(逆向工程评估与方法对话)挑战的已知贝叶斯网络和生物网络进行了广泛的比较实验。结果表明,在推荐参数下,FPHC算法在网络结构和运行时间方面平均优于原始爬山算法和最大最小爬山算法(MMHC)。此外,我们的结果表明FPHC更适合于数据有限的基因调控网络重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7077/6071145/33e4409c3f94/genes-09-00342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验