Suppr超能文献

寻找多形性胶质母细胞瘤化疗的圣杯——候选药物

Looking for the Holy Grail-Drug Candidates for Glioblastoma Multiforme Chemotherapy.

作者信息

Pająk Beata

机构信息

Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.

出版信息

Biomedicines. 2022 Apr 26;10(5):1001. doi: 10.3390/biomedicines10051001.

Abstract

Glioblastoma multiforme (GBM) is the deadliest and the most heterogeneous brain cancer. The median survival time of GBM patients is approximately 8 to 15 months after initial diagnosis. GBM development is determined by numerous signaling pathways and is considered one of the most challenging and complicated-to-treat cancer types. Standard GBM therapy consist of surgery followed by radiotherapy or chemotherapy, and combined treatment. Current standard of care (SOC) does not offer a significant chance for GBM patients to combat cancer, and the selection of available drugs is limited. For almost 20 years, there has been only one drug, Temozolomide (TMZ), approved as a first-line GBM treatment. Due to the limited efficacy of TMZ and the high rate of resistant patients, the implementation of new chemotherapeutics is highly desired. However, due to the unique properties of GBM, many challenges still need to be overcome before reaching a 'breakthrough'. This review article describes the most recent compounds introduced into clinical trials as drug candidates for GBM chemotherapy.

摘要

多形性胶质母细胞瘤(GBM)是最致命且异质性最高的脑癌。GBM患者在初次诊断后的中位生存时间约为8至15个月。GBM的发展由众多信号通路决定,被认为是最具挑战性且最难治疗的癌症类型之一。标准的GBM治疗包括手术,随后进行放疗或化疗以及联合治疗。当前的标准治疗方案(SOC)并未给GBM患者提供对抗癌症的显著机会,且可用药物的选择有限。近20年来,仅有一种药物替莫唑胺(TMZ)被批准作为GBM的一线治疗药物。由于TMZ疗效有限且耐药患者比例高,因此迫切需要实施新的化疗药物。然而,由于GBM的独特性质,在实现“突破”之前仍有许多挑战需要克服。这篇综述文章描述了作为GBM化疗候选药物引入临床试验的最新化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6a8/9138518/a59e1070e742/biomedicines-10-01001-g001.jpg

相似文献

1
Looking for the Holy Grail-Drug Candidates for Glioblastoma Multiforme Chemotherapy.
Biomedicines. 2022 Apr 26;10(5):1001. doi: 10.3390/biomedicines10051001.
2
Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme.
J Neurosurg. 2017 Feb;126(2):460-466. doi: 10.3171/2016.3.JNS152693. Epub 2016 May 13.
10
Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers.
Eur J Pharm Biopharm. 2021 Nov;168:76-89. doi: 10.1016/j.ejpb.2021.08.011. Epub 2021 Aug 28.

引用本文的文献

1
Repurposing the DNA Labeling Agent EdU for Therapy against Heterogeneous Patient Glioblastoma.
Mol Cancer Ther. 2025 Aug 1;24(8):1213-1225. doi: 10.1158/1535-7163.MCT-24-1098.
2
Immunotherapy against glioblastoma using backpack-activated neutrophils.
Bioeng Transl Med. 2024 Aug 13;10(1):e10712. doi: 10.1002/btm2.10712. eCollection 2025 Jan.
4
Potent Biological Activity of Fluorinated Derivatives of 2-Deoxy-d-Glucose in a Glioblastoma Model.
Biomedicines. 2024 Oct 1;12(10):2240. doi: 10.3390/biomedicines12102240.
5
Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma.
Oncologist. 2025 Feb 6;30(2). doi: 10.1093/oncolo/oyae227.
6
Role of scaffold proteins in the heterogeneity of glioblastoma.
Cell Commun Signal. 2024 Oct 7;22(1):477. doi: 10.1186/s12964-024-01809-1.
7
Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells.
DNA Repair (Amst). 2024 Sep;141:103715. doi: 10.1016/j.dnarep.2024.103715. Epub 2024 Jul 18.
8
Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment.
J Phys Chem B. 2024 Jul 4;128(26):6291-6307. doi: 10.1021/acs.jpcb.4c02213. Epub 2024 Jun 20.
9
Second-Line Treatment of Pancreatic Adenocarcinoma: Shedding Light on New Opportunities and Key Talking Points from Clinical Trials.
Clin Exp Gastroenterol. 2024 Apr 18;17:121-134. doi: 10.2147/CEG.S390655. eCollection 2024.

本文引用的文献

1
Synergistic Anticancer Effect of Glycolysis and Histone Deacetylases Inhibitors in a Glioblastoma Model.
Biomedicines. 2021 Nov 23;9(12):1749. doi: 10.3390/biomedicines9121749.
2
Treatment patterns and outcomes for patients with newly diagnosed glioblastoma multiforme: a retrospective cohort study.
CNS Oncol. 2021 Sep 1;10(3):CNS76. doi: 10.2217/cns-2021-0007. Epub 2021 Aug 11.
3
Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review.
Cancer Drug Resist. 2021;4(1):17-43. doi: 10.20517/cdr.2020.79. Epub 2021 Mar 19.
4
The Impact of Surgery on the Survival of Patients with Recurrent Glioblastoma.
Asian J Neurosurg. 2021 Feb 23;16(1):1-7. doi: 10.4103/ajns.AJNS_180_20. eCollection 2021 Jan-Mar.
5
Fuzuloparib: First Approval.
Drugs. 2021 Jul;81(10):1221-1226. doi: 10.1007/s40265-021-01541-x.
6
Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis.
Front Neurol. 2020 Sep 17;11:1036. doi: 10.3389/fneur.2020.01036. eCollection 2020.
7
Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology.
J Physiol. 2021 Jan;599(1):23-37. doi: 10.1113/JP280572. Epub 2020 Oct 15.
8
STAT3 Contributes to Radioresistance in Cancer.
Front Oncol. 2020 Jul 7;10:1120. doi: 10.3389/fonc.2020.01120. eCollection 2020.
10
A Potential Mechanism of Temozolomide Resistance in Glioma-Ferroptosis.
Front Oncol. 2020 Jun 23;10:897. doi: 10.3389/fonc.2020.00897. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验