Vepris Olena, Eich Christina, Feng Yansong, Fuentes Gastón, Zhang Hong, Kaijzel Eric L, Cruz Luis J
Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Biomedicines. 2022 May 5;10(5):1070. doi: 10.3390/biomedicines10051070.
Triplet-triplet annihilation upconversion (TTA-UC) nanoparticles (NPs) have emerged as imaging probes and therapeutic probes in recent years due to their excellent optical properties. In contrast to lanthanide ion-doped inorganic materials, highly efficient TTA-UC can be generated by low excitation power density, which makes it suitable for clinical applications. In the present study, we used biodegradable poly(lactic-co-glycolic acid) (PLGA)-NPs as a delivery vehicle for TTA-UC based on the heavy metal porphyrin Platinum(II) octaethylporphyrin (PtOEP) and the polycyclic aromatic hydrocarbon 9,10-diphenylanthracene (DPA) as a photosensitizer/emitter pair. TTA-UC-PLGA-NPs were successfully synthesized according to an oil-in-water emulsion and solvent evaporation method. After physicochemical characterization, UC-efficacy of TTA-UC-PLGA-NPs was assessed in vitro and ex vivo. TTA-UC could be detected in the tumour area 96 h after in vivo administration of TTA-UC-PLGA-NPs, confirming the integrity and suitability of PLGA-NPs as a TTA-UC in vivo delivery system. Thus, this study provides proof-of-concept that the advantageous properties of PLGA can be combined with the unique optical properties of TTA-UC for the development of advanced nanocarriers for simultaneous in vivo molecular imaging and drug delivery.
近年来,三重态-三重态湮灭上转换(TTA-UC)纳米粒子(NPs)因其优异的光学性质而成为成像探针和治疗探针。与镧系离子掺杂的无机材料不同,低激发功率密度即可产生高效的TTA-UC,这使其适用于临床应用。在本研究中,我们使用可生物降解的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒子作为TTA-UC的递送载体,该载体基于重金属卟啉八乙基铂(II)卟啉(PtOEP)和多环芳烃9,10-二苯基蒽(DPA)作为光敏剂/发射体对。根据水包油乳液和溶剂蒸发法成功合成了TTA-UC-PLGA-NPs。经过物理化学表征后,在体外和离体条件下评估了TTA-UC-PLGA-NPs的上转换效率。在体内给予TTA-UC-PLGA-NPs 96小时后,可在肿瘤区域检测到TTA-UC,证实了PLGA纳米粒子作为TTA-UC体内递送系统的完整性和适用性。因此,本研究提供了概念验证,即PLGA的优势特性可与TTA-UC独特的光学性质相结合,用于开发先进的纳米载体,以实现体内分子成像和药物递送的同步进行。