Suppr超能文献

三重态-三重态湮灭上转换拓宽光生物催化的波长谱。

Triplet-triplet annihilation-based photon-upconversion to broaden the wavelength spectrum for photobiocatalysis.

机构信息

Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Republic of Korea.

Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

出版信息

Sci Rep. 2022 Jun 7;12(1):9397. doi: 10.1038/s41598-022-13406-8.

Abstract

Photobiocatalysis is a growing field of biocatalysis. Especially light-driven enzyme catalysis has contributed significantly to expanding the scope of synthetic organic chemistry. However, photoenzymes usually utilise a rather narrow wavelength range of visible (sun)light. Triplet-triplet annihilation-based upconversion (TTA-UC) of long wavelength light to shorter wavelength light may broaden the wavelength range. To demonstrate the feasibility of light upconversion we prepared TTA-UC poly(styrene) (PS) nanoparticles doped with platinum(II) octaethylporphyrin (PtOEP) photosensitizer and 9,10-diphenylanthracene (DPA) annihilator (PtOEP:DPA@PS) for application in aqueous solutions. Photoexcitation of PtOEP:DPA@PS nanoparticles with 550 nm light led to upconverted emission of DPA 418 nm. The TTA-UC emission could photoactivate flavin-dependent photodecarboxylases with a high energy transfer efficiency. This allowed the photodecarboxylase from Chlorella variabilis NC64A to catalyse the decarboxylation of fatty acids into long chain secondary alcohols under green light (λ = 550 nm).

摘要

光生物催化是生物催化领域的一个新兴分支。特别是光驱动的酶催化在扩展有机合成化学的范围方面做出了重大贡献。然而,光酶通常利用可见光(太阳)光相当窄的波长范围。基于三重态-三重态湮灭的上转换(TTA-UC)可以将长波长光转换为短波长光,从而拓宽波长范围。为了证明光上转换的可行性,我们制备了掺杂有铂(II)八乙基卟啉(PtOEP)光敏剂和 9,10-二苯基蒽(DPA)猝灭剂的 TTA-UC 聚苯乙烯(PS)纳米粒子(PtOEP:DPA@PS),用于水溶液中的应用。用 550nm 的光激发 PtOEP:DPA@PS 纳米粒子,导致 DPA 的上转换发射 418nm。TTA-UC 发射可以用光转移效率高的黄素依赖性光脱羧酶进行光激活。这使得来自 Chlorella variabilis NC64A 的光脱羧酶能够在绿光(λ=550nm)下催化脂肪酸脱羧生成长链仲醇。

相似文献

2
Enhancing Triplet-Triplet Annihilation Upconversion: From Molecular Design to Present Applications.
Acc Chem Res. 2022 Sep 20;55(18):2604-2615. doi: 10.1021/acs.accounts.2c00307. Epub 2022 Sep 8.
3
All-Solution-Based Aggregation Control in Solid-State Photon Upconverting Organic Model Composites.
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):845-857. doi: 10.1021/acsami.6b12704. Epub 2016 Dec 19.
4
Unexpected Performance of a Bifunctional Sensitizer/Activator Component for Photon Energy Management via Upconversion.
J Phys Chem Lett. 2024 May 23;15(20):5337-5343. doi: 10.1021/acs.jpclett.4c00720. Epub 2024 May 10.
5
Absolute Method to Certify Quantum Yields of Photon Upconversion via Triplet-Triplet Annihilation.
J Phys Chem A. 2019 Nov 21;123(46):10197-10203. doi: 10.1021/acs.jpca.9b08636. Epub 2019 Nov 11.
6
Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet-triplet annihilation.
Phys Chem Chem Phys. 2021 Mar 11;23(9):5673-5679. doi: 10.1039/d0cp06139e.
7
Optically Coupled PtOEP and DPA Molecules Encapsulated into PLGA-Nanoparticles for Cancer Bioimaging.
Biomedicines. 2022 May 5;10(5):1070. doi: 10.3390/biomedicines10051070.

引用本文的文献

1
Concurrent Linear Deracemization of Secondary Benzylic Alcohols via Simultaneous Photocatalysis and Whole-cell Biocatalysis.
ACS Catal. 2025 Aug 18;15(17):15195-15210. doi: 10.1021/acscatal.5c04974. eCollection 2025 Sep 5.
2
Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals.
ACS Nano. 2024 Jun 11;18(23):15229-15238. doi: 10.1021/acsnano.4c03753. Epub 2024 May 31.
3
Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC.
Inorg Chem. 2024 May 27;63(21):9931-9940. doi: 10.1021/acs.inorgchem.4c01003. Epub 2024 May 13.
4
Triplet-triplet annihilation photon upconversion-mediated photochemical reactions.
Nat Rev Chem. 2024 Apr;8(4):238-255. doi: 10.1038/s41570-024-00585-3. Epub 2024 Mar 21.
5
Novel applications of photobiocatalysts in chemical transformations.
RSC Adv. 2024 Jan 15;14(4):2590-2601. doi: 10.1039/d3ra07371h. eCollection 2024 Jan 10.
6
Triplet-Triplet Annihilation Upconversion-Based Oxygen Sensors to Overcome the Limitation of Autofluorescence.
ACS Sens. 2023 Aug 25;8(8):3043-3050. doi: 10.1021/acssensors.3c00548. Epub 2023 Aug 4.

本文引用的文献

1
Recent trends in biocatalysis.
Chem Soc Rev. 2021 Jul 21;50(14):8003-8049. doi: 10.1039/d0cs01575j. Epub 2021 Jun 18.
2
Internal Illumination to Overcome the Cell Density Limitation in the Scale-up of Whole-Cell Photobiocatalysis.
ChemSusChem. 2021 Aug 9;14(15):3219-3225. doi: 10.1002/cssc.202100832. Epub 2021 Jul 6.
4
Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production.
Front Bioeng Biotechnol. 2021 Feb 12;9:628597. doi: 10.3389/fbioe.2021.628597. eCollection 2021.
5
Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel.
ChemSusChem. 2021 Feb 18;14(4):1053-1056. doi: 10.1002/cssc.202002957. Epub 2021 Feb 2.
6
Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins.
J Am Chem Soc. 2021 Jan 13;143(1):97-102. doi: 10.1021/jacs.0c11462. Epub 2020 Dec 28.
7
Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase.
ACS Catal. 2020 Jun 19;10(12):6691-6696. doi: 10.1021/acscatal.0c01684. Epub 2020 May 19.
8
Photoenzymatic enantioselective intermolecular radical hydroalkylation.
Nature. 2020 Aug;584(7819):69-74. doi: 10.1038/s41586-020-2406-6. Epub 2020 Jun 8.
9
10
Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using 'Ene'-Reductases with Photoredox Catalysts.
Angew Chem Int Ed Engl. 2020 Jun 22;59(26):10484-10488. doi: 10.1002/anie.202003125. Epub 2020 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验