Garavaglia Beatrice, Vallino Letizia, Ferraresi Alessandra, Esposito Andrea, Salwa Amreen, Vidoni Chiara, Gentilli Sergio, Isidoro Ciro
Laboratory of Molecular Pathology, Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100 Novara, Italy.
Department of Health Sciences, Division of General Surgery, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy.
Biomedicines. 2022 May 13;10(5):1131. doi: 10.3390/biomedicines10051131.
Colorectal cancer (CRC) pathogenesis is mainly driven by alterations in WNT signaling, which results in altered transcriptional activity of β-Catenin. Mutations in (Adenomatous Polyposis Coli) are reflected in β-Catenin hyperactivation and loss of proliferation control. Certain intestinal bacteria metabolites have shown the ability to limit CRC cell proliferation and CRC pathogenesis. Here, we investigated the molecular mechanism underlying the anti-proliferative activity of butyrate, a microbiota-derived short chain fatty acid, in two CRC cell lines, namely HCT116 and SW620, which bear a mutation in β-Catenin and , respectively. In particular, we focused on autophagy, a lysosome-dependent degradation pathway, which was shown to control intestinal tissue homeostasis. Butyrate reduced CRC cell proliferation, as witnessed by the downregulation of proliferation markers. TCGA bioinformatic transcriptomic analysis of (β-Catenin) gene correlation in CRC patients showed that β-Catenin negatively correlates with the autophagy gene . In CRC cells, regardless of the mutational state of or β-Catenin genes, butyrate caused the autophagy-mediated degradation of β-Catenin; thus, preventing its transcriptional activity. Autophagy gene silencing restored β-Catenin levels, allowing it to translocate into the nucleus to promote the expression of downstream genes associated with cancer cell proliferation. CRC-affected patients show driver mutations in the WNT pathway; thus, targeting its crucial effector may be a promising therapeutic strategy in CRC treatment; for instance, by using probiotics that stimulate autophagy.
结直肠癌(CRC)的发病机制主要由WNT信号通路的改变驱动,这导致β-连环蛋白的转录活性发生改变。腺瘤性息肉病基因(APC)的突变表现为β-连环蛋白的过度激活和增殖控制的丧失。某些肠道细菌代谢产物已显示出限制CRC细胞增殖和CRC发病机制的能力。在此,我们研究了微生物群衍生的短链脂肪酸丁酸盐在两种CRC细胞系(即分别携带β-连环蛋白和APC突变的HCT116和SW620)中抗增殖活性的分子机制。特别是,我们专注于自噬,这是一种溶酶体依赖性降解途径,已被证明可控制肠道组织稳态。丁酸盐降低了CRC细胞增殖,增殖标志物的下调证明了这一点。对CRC患者中APC(β-连环蛋白)基因相关性的TCGA生物信息学转录组分析表明,β-连环蛋白与自噬基因ATG16L1呈负相关。在CRC细胞中,无论APC或β-连环蛋白基因的突变状态如何,丁酸盐都会导致β-连环蛋白通过自噬介导的降解;从而阻止其转录活性。自噬基因沉默恢复了β-连环蛋白水平,使其能够转运到细胞核中以促进与癌细胞增殖相关的下游基因的表达。受CRC影响的患者在WNT通路中表现出驱动突变;因此,靶向其关键效应物可能是CRC治疗中一种有前景的治疗策略;例如,通过使用刺激自噬的益生菌。