Suppr超能文献

MHSA-EC:一种融合多头自注意力机制与有效信道状态信息的室内定位算法

MHSA-EC: An Indoor Localization Algorithm Fusing the Multi-Head Self-Attention Mechanism and Effective CSI.

作者信息

Liu Wen, Jia Mingjie, Deng Zhongliang, Qin Changyan

机构信息

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Entropy (Basel). 2022 Apr 25;24(5):599. doi: 10.3390/e24050599.

Abstract

Channel state information (CSI) provides a fine-grained description of the signal propagation process, which has attracted extensive attention in the field of indoor positioning. The CSI signals collected by different fingerprint points have a high degree of discrimination due to the influence of multi-path effects. This multi-path effect is reflected in the correlation between subcarriers and antennas. However, in mining such correlations, previous methods are difficult to aggregate non-adjacent features, resulting in insufficient multi-path information extraction. In addition, the existence of the multi-path effect makes the relationship between the original CSI signal and the distance not obvious, and it is easy to cause mismatching of long-distance points. Therefore, this paper proposes an indoor localization algorithm that combines the multi-head self-attention mechanism and effective CSI (MHSA-EC). This algorithm is used to solve the problem where it is difficult for traditional algorithms to effectively aggregate long-distance CSI features and mismatches of long-distance points. This paper verifies the stability and accuracy of MHSA-EC positioning through a large number of experiments. The average positioning error of MHSA-EC is 0.71 m in the comprehensive office and 0.64 m in the laboratory.

摘要

信道状态信息(CSI)提供了对信号传播过程的细粒度描述,这在室内定位领域引起了广泛关注。由于多径效应的影响,不同指纹点收集的CSI信号具有高度的区分性。这种多径效应体现在子载波与天线之间的相关性上。然而,在挖掘这种相关性时,以往的方法难以聚合非相邻特征,导致多径信息提取不足。此外,多径效应的存在使得原始CSI信号与距离之间的关系不明显,容易导致长距离点的匹配错误。因此,本文提出了一种结合多头自注意力机制和有效CSI的室内定位算法(MHSA-EC)。该算法用于解决传统算法难以有效聚合长距离CSI特征以及长距离点匹配错误的问题。本文通过大量实验验证了MHSA-EC定位的稳定性和准确性。在综合办公室中,MHSA-EC的平均定位误差为0.71米,在实验室中为0.64米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c069/9140804/dd176ddc815f/entropy-24-00599-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验