Suppr超能文献

基于 CSI 指纹的随机森林的 WiFi 室内定位。

WiFi Indoor Localization with CSI Fingerprinting-Based Random Forest.

机构信息

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2018 Aug 31;18(9):2869. doi: 10.3390/s18092869.

Abstract

WiFi fingerprinting indoor positioning systems have extensive applied prospects. However, a vast amount of data in a particular environment has to be gathered to establish a fingerprinting database. Deficiencies of these systems are the lack of universality of multipath effects and a burden of heavy workload on fingerprint storage. Thus, this paper presents a novel Random Forest fingerprinting localization (RFFP) method using channel state information (CSI), which utilizes the Random Forest model trained in the offline stage as fingerprints in order to economize memory space and possess a good anti-multipath characteristic. Furthermore, a series of specific experiments are conducted in a microwave anechoic chamber and an office to detail the localization performance of RFFP with different wireless channel circumstances, system parameters, algorithms, and input datasets. In addition, compared with other algorithms including K-Nearest-Neighbor (KNN), Weighted K-Nearest-Neighbor (WKNN), REPTree, CART, and J48, the RFFP method provides far greater classification accuracy as well as lower mean location error. The proposed method offers outstanding comprehensive performance including accuracy, robustness, low workload, and better anti-multipath-fading.

摘要

WiFi 指纹室内定位系统具有广泛的应用前景。然而,要建立一个指纹数据库,必须在特定环境中收集大量数据。这些系统的缺点是多径效应的普遍性不足,指纹存储的工作量繁重。因此,本文提出了一种利用信道状态信息(CSI)的新型随机森林指纹定位(RFFP)方法,该方法利用离线阶段训练的随机森林模型作为指纹,以节省内存空间,并具有良好的抗多径特性。此外,在微波消声室和办公室进行了一系列具体实验,详细研究了不同无线信道环境、系统参数、算法和输入数据集下 RFFP 的定位性能。此外,与包括 K-最近邻(KNN)、加权 K-最近邻(WKNN)、REPTree、CART 和 J48 在内的其他算法相比,RFFP 方法提供了更高的分类准确性和更低的平均位置误差。该方法具有出色的综合性能,包括准确性、鲁棒性、低工作量和更好的抗多径衰落能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bdc/6164737/5a1acc479e15/sensors-18-02869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验