Bianconi Ginestra
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
The Alan Turing Institute, The British Library, London NW1 2DB, UK.
Entropy (Basel). 2022 Apr 30;24(5):633. doi: 10.3390/e24050633.
Maximum entropy network ensembles have been very successful in modelling sparse network topologies and in solving challenging inference problems. However the sparse maximum entropy network models proposed so far have fixed number of nodes and are typically not exchangeable. Here we consider hierarchical models for exchangeable networks in the sparse limit, i.e., with the total number of links scaling linearly with the total number of nodes. The approach is grand canonical, i.e., the number of nodes of the network is not fixed a priori: it is finite but can be arbitrarily large. In this way the grand canonical network ensembles circumvent the difficulties in treating infinite sparse exchangeable networks which according to the Aldous-Hoover theorem must vanish. The approach can treat networks with given degree distribution or networks with given distribution of latent variables. When only a subgraph induced by a subset of nodes is known, this model allows a Bayesian estimation of the network size and the degree sequence (or the sequence of latent variables) of the entire network which can be used for network reconstruction.
最大熵网络集成在对稀疏网络拓扑进行建模以及解决具有挑战性的推理问题方面非常成功。然而,到目前为止提出的稀疏最大熵网络模型具有固定数量的节点,并且通常不可交换。在这里,我们考虑在稀疏极限下适用于可交换网络的层次模型,即边的总数与节点总数成线性比例。该方法是巨正则的,即网络的节点数并非先验固定:它是有限的,但可以任意大。通过这种方式,巨正则网络集成规避了处理无限稀疏可交换网络时的困难,根据奥尔德斯 - 胡佛定理,这种网络必然会消失。该方法可以处理具有给定度分布的网络或具有给定潜在变量分布的网络。当仅知道由节点子集诱导的子图时,此模型允许对整个网络的大小和度序列(或潜在变量序列)进行贝叶斯估计,这可用于网络重建。